14-240/Classnotes for Monday September 15: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
(Fix some typesetting.) |
||
Line 1: | Line 1: | ||
Definition: |
Definition: |
||
Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>. |
|||
Division: if <math>a, b \in F, a / b = a * b^{-1}</math>. |
|||
Theorem: |
Theorem: |
||
Line 26: | Line 26: | ||
by cancellation (P2) , <math>b = 0</math>. |
by cancellation (P2) , <math>b = 0</math>. |
||
<math>(a + b) * (a - b) = a |
<math>(a + b) * (a - b) = a^2 - b^2</math>. |
||
proof: By F5 , <math>(a + b) * (a - b) = a * (a + (-b)) + b * (a + (-b)) |
proof: By F5 , <math>(a + b) * (a - b) = a * (a + (-b)) + b * (a + (-b)) |
||
= a * a + a * (-b) + b * a + (-b) * b |
= a * a + a * (-b) + b * a + (-b) * b |
||
= a |
= a^2 - b^2</math> |
||
Theorem : |
Theorem : |
||
There exists !(unique) <math>iota : Z |
There exists !(unique) iota <math>\iota : \Z \rightarrow F</math> s.t. |
||
1. <math>iota(0) = 0 , iota(1) = 1</math>; |
1. <math>\iota(0) = 0 , \iota(1) = 1</math>; |
||
2. For every <math>m ,n</math> belong to <math>Z</math> , <math>iota(m+n) = iota(m) + iota(n)</math>; |
2. For every <math>m ,n</math> belong to <math>Z</math> , <math>\iota(m+n) = \iota(m) + \iota(n)</math>; |
||
3. |
3. For every <math>m ,n</math> belong to <math>Z</math> , <math>\iota(m*n) = \iota(m) * \iota(n)</math>. |
||
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
Revision as of 08:42, 16 September 2014
Definition:
Subtraction: if . Division: if .
Theorem:
8. For every belongs to F , . proof of 8: By F3 , ; By F5 , ; By F3 , ; By Thm P1 ,. 9. There not exists belongs to F s.t. ; For every belongs to F s.t. is not equal to . proof of 9: By F3 , is not equal to . 10. . 11. . 12. . proof of 12: <= : By P8 , if , then ; By P8 , if , then . => : Assume , if a = 0 we have done; Otherwise , by P8 , is not equal to and we have ; by cancellation (P2) , .
.
proof: By F5 ,
Theorem :
There exists !(unique) iota s.t. 1. ; 2. For every belong to , ; 3. For every belong to , .
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1;
......
In F2 ,