14-240/Classnotes for Monday September 15: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
Definition: |
Definition: |
||
Subtract: if <math>a , b </math> belong to <math>F , a - b = a + (-b)</math>. |
Subtract: if <math>a , b </math> belong to <math>F , a - b = a + (-b)</math>. |
||
Divition: if <math>a , b </math> belong to F , |
Divition: if <math>a , b </math> belong to <math>F , a / b = a * (b </math>to the power <math>(-1)</math>. |
||
Theorem: |
Theorem: |
||
| Line 33: | Line 33: | ||
There exists !(unique) <math>iota : Z ---> F</math> s.t. |
There exists !(unique) <math>iota : Z ---> F</math> s.t. |
||
1. <math>iota(0) = 0 , iota(1) = 1</math>; |
1. <math>iota(0) = 0 , iota(1) = 1</math>; |
||
2. For every <math>m ,n</math> belong to Z , <math>iota(m+n) = iota(m) + iota(n)</math>; |
2. For every <math>m ,n</math> belong to <math>Z</math> , <math>iota(m+n) = iota(m) + iota(n)</math>; |
||
3. >For every <math>m ,n</math> belong to Z , <math>iota(m*n) = iota(m) * iota(n)</math>. |
3. >For every <math>m ,n</math> belong to <math>Z</math> , <math>iota(m*n) = iota(m) * iota(n)</math>. |
||
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
||
Revision as of 11:03, 15 September 2014
Definition:
Subtract: if belong to . Divition: if belong to to the power Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (-1)} .
Theorem:
8. For every Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a}
belongs to F , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a * 0 = 0}
.
proof of 8: By F3 , ;
By F5 , ;
By F3 , ;
By Thm P1 ,.
9. There not exists belongs to F s.t. ;
For every belongs to F s.t. is not equal to .
proof of 9: By F3 , is not equal to .
10. .
11. .
12. .
proof of 12: <= : By P8 , if , then ;
By P8 , if , then .
=> : Assume , if a = 0 we have done;
Otherwise , by P8 , is not equal to and we have ;
by cancellation (P2) , .
.
proof: By F5 ,
Theorem :
There exists !(unique) s.t. 1. ; 2. For every belong to , ; 3. >For every belong to , .
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1;
......
In F2 ,