Notes for AKT-090924-2/0:36:01: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
Exercise |
'''Exercise.''' If <math>f \in {\mathcal V}_n</math> and <math>g \in {\mathcal V}_m</math> then <math>f \cdot g \in {\mathcal V}_{n+m}</math> (as what one would expect by looking at degrees of polynomials) and <math>W_{f \cdot g} = m_\mathbb{Q} \circ (W_f \otimes W_g) \circ \Delta</math> where <math>(W_f \otimes W_g) \circ \Delta: {\mathcal A} \rightarrow \mathbb{Q} \otimes \mathbb{Q}</math> and <math>m_\mathbb{Q}</math> is the multiplication of rationals. |
||
Latest revision as of 16:34, 28 September 2009
Exercise. If [math]\displaystyle{ f \in {\mathcal V}_n }[/math] and [math]\displaystyle{ g \in {\mathcal V}_m }[/math] then [math]\displaystyle{ f \cdot g \in {\mathcal V}_{n+m} }[/math] (as what one would expect by looking at degrees of polynomials) and [math]\displaystyle{ W_{f \cdot g} = m_\mathbb{Q} \circ (W_f \otimes W_g) \circ \Delta }[/math] where [math]\displaystyle{ (W_f \otimes W_g) \circ \Delta: {\mathcal A} \rightarrow \mathbb{Q} \otimes \mathbb{Q} }[/math] and [math]\displaystyle{ m_\mathbb{Q} }[/math] is the multiplication of rationals.