07-401/Class Notes for March 7: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 7: Line 7:
Some discussion of our general plan.
Some discussion of our general plan.


Lecture notes [[07-401/Notes|notes]]
Lecture [[07-401/Notes|notes]]


===Extension Fields===
===Extension Fields===
Line 42: Line 42:


===Zeros of Irreducible Polynomials===
===Zeros of Irreducible Polynomials===

(This section was not covered on March 7, parts of it will be covered later on).


'''Definition.''' The derivative of a polynomial.
'''Definition.''' The derivative of a polynomial.
Line 64: Line 66:


'''Example.''' <math>x^2-t\in{\mathbb Z}_2(t)[x]</math> is irreducible and has a single zero of multiplicity 2 within its splitting field over <math>{\mathbb Z}_2(t)[x]</math>.
'''Example.''' <math>x^2-t\in{\mathbb Z}_2(t)[x]</math> is irreducible and has a single zero of multiplicity 2 within its splitting field over <math>{\mathbb Z}_2(t)[x]</math>.

==Lecture Notes==

===Page 1===

07-401 March 7 NOTES
[[Image:07-401 Mar.07.07 0001.jpg|400px]]

===Page 2===

07-401 March 7 NOTES
[[Image:07-401 Mar.07.07 0002.jpg|400px]]

===Page 3===

07-401 March 7 NOTES
[[Image:07-401 Mar.07.07 0003.jpg|400px]]

===Page 4===

07-401 March 7 NOTES
[[Image:07-401 Mar.07.07 0004.jpg|400px]]

===Page 5===

07-401 March 7 NOTES
[[Image:07-401 Mar.07.07 0005.jpg|400px]]

===Page 6===

07-401 March 7 NOTES
[[Image:07-401 Mar.07.07 0006.jpg|400px]]

Latest revision as of 10:38, 22 April 2007


Class Plan

Some discussion of the term test and HW6.

Some discussion of our general plan.

Lecture notes

Extension Fields

Definition. An extension field of .

Theorem. For every non-constant polynomial in there is an extension of in which has a zero.

Example over .

Example over .

Definition. .

Theorem. If is a root of an irreducible polynomial , within some extension field of , then , and (here ) is a basis for over .

Corollary. In this case, depends only on .

Splitting Fields

Definition. splits in , a splitting field for over .

Theorem. A splitting field always exists.

Example. over .

Example. Factor within its splitting field .

Theorem. Any two splitting fields for over are isomorphic.

Lemma 1. If irreducible over , an isomorphism, a root of (in some ), a root of in some , then .

Lemma 2. Isomorphisms can be extended to splitting fields.

Zeros of Irreducible Polynomials

(This section was not covered on March 7, parts of it will be covered later on).

Definition. The derivative of a polynomial.

Claim. The derivative operation is linear and satisfies Leibnitz's law.

Theorem. has a multiple zero in some extension field of iff and have a common factor of positive degree.

Lemma. The property of "being relatively prime" is preserved under extensions.

Theorem. Let be irreducible. If , then has no multiple zeros in any extension of . If , then has multiple zeros (in some extension) iff it is of the form for some .

Definition. A perfect field.

Theorem. A finite field is perfect.

Theorem. An irreducible polynomial over a perfect field has no multiple zeros (in any extension).

Theorem. Let be irreducible and let be the splitting field of over . Then in all zeros of have the same multiplicity.

Corollary. as above must have the form for some and .

Example. is irreducible and has a single zero of multiplicity 2 within its splitting field over .

Lecture Notes

Page 1

07-401 March 7 NOTES 07-401 Mar.07.07 0001.jpg

Page 2

07-401 March 7 NOTES 07-401 Mar.07.07 0002.jpg

Page 3

07-401 March 7 NOTES 07-401 Mar.07.07 0003.jpg

Page 4

07-401 March 7 NOTES 07-401 Mar.07.07 0004.jpg

Page 5

07-401 March 7 NOTES 07-401 Mar.07.07 0005.jpg

Page 6

07-401 March 7 NOTES 07-401 Mar.07.07 0006.jpg