The Existence of the Exponential Function/References: Difference between revisions
No edit summary |
No edit summary |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==References== |
==References== |
||
{{note|Bar-Natan_97}} D. Bar-Natan, ''Non-associative tangles,'' in ''Geometric topology'' (proceedings of the Georgia international topology conference), (W. H. Kazez, ed.), 139-183, Amer. Math. Soc. and International Press, Providence, 1997. |
|||
{{note|Bar-Natan_Le_Thurston_03}} D. Bar-Natan, T. Q. T. Le and D. P. Thurston, ''Two applications of elementary knot theory to Lie algebras and Vassiliev invariants,'' Geometry and Topology '''7-1''' (2003) 1-31, {{arXiv|math.QA/0204311}}. |
|||
{{note|Drinfeld_90}} V. G. Drinfel'd, ''Quasi-Hopf algebras,'' Leningrad Math. J. '''1''' (1990) 1419-1457. |
|||
{{note|Drinfeld_91}} V. G. Drinfel'd, ''On quasitriangular Quasi-Hopf algebras and a group closely connected with <math>\operatorname{Gal}(\bar{\mathbb Q}/{\mathbb Q})</math>,'' Leningrad Math. J. '''2''' (1991) 829-860. |
|||
{{note|Le_Murakami_96}} T. Q. T. Le and J. Murakami, ''The universal Vassiliev-Kontsevich invariant for framed oriented links,'' Compositio Math. '''102''' (1996), 41-64, {{arXiv|hep-th/9401016}}. |
Latest revision as of 12:37, 5 March 2007
References
[Bar-Natan_97] ^ D. Bar-Natan, Non-associative tangles, in Geometric topology (proceedings of the Georgia international topology conference), (W. H. Kazez, ed.), 139-183, Amer. Math. Soc. and International Press, Providence, 1997.
[Bar-Natan_Le_Thurston_03] ^ D. Bar-Natan, T. Q. T. Le and D. P. Thurston, Two applications of elementary knot theory to Lie algebras and Vassiliev invariants, Geometry and Topology 7-1 (2003) 1-31, arXiv:math.QA/0204311.
[Drinfeld_90] ^ V. G. Drinfel'd, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990) 1419-1457.
[Drinfeld_91] ^ V. G. Drinfel'd, On quasitriangular Quasi-Hopf algebras and a group closely connected with , Leningrad Math. J. 2 (1991) 829-860.
[Le_Murakami_96] ^ T. Q. T. Le and J. Murakami, The universal Vassiliev-Kontsevich invariant for framed oriented links, Compositio Math. 102 (1996), 41-64, arXiv:hep-th/9401016.