User:Sankaran/06-1350-HW4: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 1: Line 1:

Warning - nothing new yet...


===The Generators===
===The Generators===
Line 7: Line 7:
|- align=center valign=middle
|- align=center valign=middle
|align=left|Picture
|align=left|Picture
|[[Image:06-1350-T.svg|100px]]
|
|[[Image:06-1350-R.svg|100px]]
|
|[[Image:06-1350-Phi.svg|100px]]
|
|[[Image:06-1350-BPlus.svg|100px]]
|[[Image:06-1350-BPlus.svg|100px]]
|[[Image:06-1350-BMinus.svg|100px]]
|
|- align=center valign=middle
|- align=center valign=middle
|align=left|Generator
|align=left|Generator
Line 28: Line 28:
|}
|}


(Thanks [[User:Zak/06-1350-HW4|Zavosh]] for the nice picture)
===The Relations===
===The Relations===

====The Reidemeister Move R2====
(Courtesy of Andy)

[[Image:06-1350-R2-weird.png|center]]
In formulas, this is
<center><math>1 = (123)^\star B^- (132)^\star B^+.</math></center>
Linearized and written in functional form, this becomes
{| align=center
|-
|<math>\rho_2(x_1,x_2,x_3) = - b^-(x_1,x_2,x_3) - b^+(x_1,x_3,x_2).</math>
|}


====The Reidemeister Move R3====
====The Reidemeister Move R3====
(Picture and first example courtesy of Dror)
The picture (with three sides of the shielding removed) is

There are eight of these (each crossing in the picture can be + or - ).
For example, if all the crossings are positive, the picture (with three sides of the shielding removed) is
[[Image:06-1350-R4.svg|400px|center]]
[[Image:06-1350-R4.svg|400px|center]]
In formulas, this is
In formulas, this is
Line 38: Line 54:
{| align=center
{| align=center
|-
|-
|<math>\rho_3(x_1, x_2, x_3, x_4) = </math>
|<math>\rho_3[+++](x_1, x_2, x_3, x_4) = </math>
|<math>b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4)</math>
|<math>b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4)</math>
|-
|-
Line 44: Line 60:
|<math>- b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3).</math>
|<math>- b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3).</math>
|}
|}

Here are the rest of them, linearized and in functional form - I think this is too many, but it's probably easier to write these out than to figure the relationships between them. Also, some better notation is needed.

<math>\rho_3[++-](x_1,x_2,x_3,x_4) = b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^-(x_1,x_3,x_4)
- b^-(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3).</math>

<math>\rho_3[+-+](x_1,x_2,x_3,x_4) = b^+(x_1,x_2,x_3) + b^-(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4)- b^+(x_1+x_2,x_3,x_4) - b^-(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3). </math>

<math>\rho_3[-++](x_1,x_2,x_3,x_4) = b^-(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4)- b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^-(x_1+x_4,x_2,x_3). </math>

<math>\rho_3[+--](x_1,x_2,x_3,x_4) = b^+(x_1,x_2,x_3) + b^-(x_1+x_3,x_2,x_4) + b^-(x_1,x_3,x_4)- b^-(x_1+x_2,x_3,x_4) - b^-(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3). </math>

<math>\rho_3[-+-](x_1,x_2,x_3,x_4) = b^-(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^-(x_1,x_3,x_4)- b^-(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^-(x_1+x_4,x_2,x_3). </math>

<math>\rho_3[--+](x_1,x_2,x_3,x_4) = b^-(x_1,x_2,x_3) + b^-(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4)- b^+(x_1+x_2,x_3,x_4) - b^-(x_1,x_2,x_4) - b^-(x_1+x_4,x_2,x_3). </math>

<math>\rho_3[---](x_1,x_2,x_3,x_4) = b^-(x_1,x_2,x_3) + b^-(x_1+x_3,x_2,x_4) + b^-(x_1,x_3,x_4)- b^-(x_1+x_2,x_3,x_4) - b^-(x_1,x_2,x_4) - b^-(x_1+x_4,x_2,x_3). </math>
====The Reidemeister Move R4====
(Courtesy of Andy)

There are two (ostensibly) different versions:
[[Image:06-1350-R4a.png|center]]
In formulas, this is
<center><math>(1230)^\star B^+ (1213)^\star B^+ (1023)^\star \Phi = (1123)^\star \Phi (1233)^\star B^+</math>.</center>
Linearized and written in functional form, this becomes
{| align=center
|-
|<math>\rho_{4a}(x_1,x_2,x_3,x_4) = b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + \phi(x_1,x_3,x_4) - \phi(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_3+x_4).</math>
|}

Second:
[[Image:06-1350-R4b.png|center]]
In formulas, this is
<center><math>(1123)^\star B^+ (1203)^\star B^+ (1231)^\star \Phi = (1230)^\star \Phi (1223)^\star B^+</math>.</center>
Linearized and written in functional form, this becomes
{| align=center
|-
|<math>\rho_{4b}(x_1,x_2,x_3,x_4) = b^+(x_1+x_2,x_3,x_4) + b^+(x_1,x_2,x_4) + \phi(x_1+x_4,x_2,x_3) - \phi(x_1,x_2,x_3) - b^+(x_1,x_2+x_3,x_4).</math>
|}



===The Syzygies===
===The Syzygies===

Latest revision as of 17:04, 12 December 2006


The Generators

Our generators are , , and :

Picture 06-1350-T.svg 06-1350-R.svg 06-1350-Phi.svg 06-1350-BPlus.svg 06-1350-BMinus.svg
Generator
Perturbation

(Thanks Zavosh for the nice picture)

The Relations

The Reidemeister Move R2

(Courtesy of Andy)

06-1350-R2-weird.png

In formulas, this is

Linearized and written in functional form, this becomes

The Reidemeister Move R3

(Picture and first example courtesy of Dror)

There are eight of these (each crossing in the picture can be + or - ). For example, if all the crossings are positive, the picture (with three sides of the shielding removed) is

06-1350-R4.svg

In formulas, this is

.

Linearized and written in functional form, this becomes

Here are the rest of them, linearized and in functional form - I think this is too many, but it's probably easier to write these out than to figure the relationships between them. Also, some better notation is needed.

The Reidemeister Move R4

(Courtesy of Andy)

There are two (ostensibly) different versions:

06-1350-R4a.png

In formulas, this is

.

Linearized and written in functional form, this becomes

Second:

06-1350-R4b.png

In formulas, this is

.

Linearized and written in functional form, this becomes


The Syzygies

The "B around B" Syzygy

The picture, with all shielding removed, is

06-1350-BAroundB.svg
(Drawn with Inkscape)
(note that lower quality pictures are also acceptable)

The functional form of this syzygy is

A Mathematica Verification

The following simulated Mathematica session proves that for our single relation and single syzygy, . Copy paste it into a live Mathematica session to see that it's right!

In[1]:= d1 = { rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] + bp[x1, x3, x4] - bp[x1 + x2, x3, x4] - bp[x1, x2, x4] - bp[x1 + x4, x2, x3] }; d2 = { BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4] - rho3[x1 + x2, x3, x4, x5] - rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] - rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5] };
In[3]:= BAroundB[x1, x2, x3, x4, x5] /. d2
Out[3]= - rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5] + rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5] + rho3[x1 + x3, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] + rho3[x1 + x5, x2, x3, x4]
In[4]:= BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1
Out[4]= 0