User:Andy/06-1350-HW4: Difference between revisions
(Added Phi around Phi syzygy.) |
mNo edit summary |
||
| (3 intermediate revisions by the same user not shown) | |||
| Line 27: | Line 27: | ||
===The Relations=== |
===The Relations=== |
||
====The Reidemeister Move R2==== |
|||
The following version of R2 was the easiest to use to build my [[media:06-1350-PhiAroundPhi.png|original <math>\Phi</math> around <math>\Phi</math> syzygy]]: |
|||
[[Image:06-1350-R2-weird.png|center]] |
|||
In formulas, this is |
|||
<center><math>1 = (123)^\star B^- (132)^\star B^+.</math></center> |
|||
Linearized and written in functional form, this becomes |
|||
{| align=center |
|||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
====The Reidemeister Move R3==== |
====The Reidemeister Move R3==== |
||
| Line 118: | Line 129: | ||
====The "<math>\Phi</math> around <math>\Phi</math>" Syzygy==== |
====The "<math>\Phi</math> around <math>\Phi</math>" Syzygy==== |
||
The original syzygy is available at [[:Image:06-1350-PhiAroundPhi.png]]. |
|||
The picture is |
|||
A cleaner, minimal picture is |
|||
{| align=center |
{| align=center |
||
|- align=center |
|- align=center |
||
|[[Image:06-1350- |
|[[Image:06-1350-PhiAroundPhiClean.png|center]] |
||
|- |
|- |
||
|align=right|(Drawn with [http://asymptote.sf.net/ Asymptote], [[06-1350/Syzygies in Asymptote|Syzygies in Asymptote]]) |
|align=right|(Drawn with [http://asymptote.sf.net/ Asymptote], [[06-1350/Syzygies in Asymptote|Syzygies in Asymptote]]) |
||
| Line 128: | Line 140: | ||
The functional form of this syzygy is |
The functional form of this syzygy is |
||
{| |
{|align=center |
||
|- |
|- |
||
|<math>\Phi\Phi(x_1,x_2,x_3,x_4,x_5) = </math> |
|<math>\Phi\Phi(x_1,x_2,x_3,x_4,x_5) = </math> |
||
|<math>\ |
|<math>\rho_{4b}(x_1+x_4,x_2,x_3,x_5) + \rho_{4b}(x_1,x_2,x_3,x_4) + \rho_{4a}(x_1,x_2+x_3,x_4,x_5)</math> |
||
|- |
|- |
||
| |
| |
||
|<math> |
|<math>- \rho_{4b}(x_1,x_2,x_3,x_4+x_5) - \rho_{4a}(x_1+x_2,x_3,x_4,x_5) - \rho_{4a}(x_1,x_2,x_4,x_5).</math> |
||
| ⚫ | |||
| ⚫ | |||
|<math>+ \rho_{4a}(x_1,x_4+x_5,x_2,x_3) - \rho_{4b}(x_1,x_4,x_5,x_2+x_3) - \rho_{4a}(x_1+x_4,x_5,x_2,x_3)</math> |
|||
|- |
|||
| |
|||
|<math>- \rho_2(x_1+x_4,x_2,x_5) - \rho_2(x_1+x_2+x_4,x_3,x_5) - \rho_{4a}(x_1,x_4,x_2,x_3)</math> |
|||
|- |
|||
| |
|||
| ⚫ | |||
|} |
|} |
||
Note that the first and last terms cancel, as the top steps at the top of the diagram are opposites. |
|||
===A Mathematica Verification=== |
===A Mathematica Verification=== |
||
Latest revision as of 17:35, 5 December 2006
The Generators
Our generators are [math]\displaystyle{ T }[/math], [math]\displaystyle{ R }[/math], [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ B^{\pm} }[/math]:
The Relations
The Reidemeister Move R2
The following version of R2 was the easiest to use to build my original [math]\displaystyle{ \Phi }[/math] around [math]\displaystyle{ \Phi }[/math] syzygy:
In formulas, this is
Linearized and written in functional form, this becomes
| [math]\displaystyle{ \rho_2(x_1,x_2,x_3) = - b^-(x_1,x_2,x_3) - b^+(x_1,x_3,x_2). }[/math] |
The Reidemeister Move R3
The picture (with three sides of the shielding removed) is
In formulas, this is
Linearized and written in functional form, this becomes
| [math]\displaystyle{ \rho_3(x_1, x_2, x_3, x_4) = }[/math] | [math]\displaystyle{ b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4) }[/math] |
| [math]\displaystyle{ - b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3). }[/math] |
The Reidemeister Move R4
To establish the syzygy below, I needed two versions of R4. First:
In formulas, this is
Linearized and written in functional form, this becomes
| [math]\displaystyle{ \rho_{4a}(x_1,x_2,x_3,x_4) = b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + \phi(x_1,x_3,x_4) - \phi(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_3+x_4). }[/math] |
Second:
In formulas, this is
Linearized and written in functional form, this becomes
| [math]\displaystyle{ \rho_{4b}(x_1,x_2,x_3,x_4) = b^+(x_1+x_2,x_3,x_4) + b^+(x_1,x_2,x_4) + \phi(x_1+x_4,x_2,x_3) - \phi(x_1,x_2,x_3) - b^+(x_1,x_2+x_3,x_4). }[/math] |
Are these independent, or can they be shown to be equivalent using other relations?
The Syzygies
The "B around B" Syzygy
The picture, with all shielding removed, is
| (Drawn with Inkscape) (note that lower quality pictures are also acceptable) |
The functional form of this syzygy is
| [math]\displaystyle{ BB(x_1,x_2,x_3,x_4,x_5) = }[/math] | [math]\displaystyle{ \rho_3(x_1, x_2, x_3, x_5) + \rho_3(x_1 + x_5, x_2, x_3, x_4) - \rho_3(x_1 + x_2, x_3, x_4, x_5) }[/math] |
| [math]\displaystyle{ - \rho_3(x_1, x_2, x_4, x_5) - \rho_3(x_1 + x_4, x_2, x_3, x_5) - \rho_3(x_1, x_2, x_3, x_4) }[/math] | |
| [math]\displaystyle{ + \rho_3(x_1, x_3, x_4, x_5) + \rho_3(x_1 + x_3, x_2, x_4, x_5). }[/math] |
The "[math]\displaystyle{ \Phi }[/math] around B" Syzygy
The picture, with all shielding (and any other helpful notations) removed, is
| (Drawn with Asymptote, Syzygies in Asymptote) |
The functional form of this syzygy is
| [math]\displaystyle{ \Phi B(x_1,x_2,x_3,x_4,x_5) = }[/math] | [math]\displaystyle{ \rho_3(x_1,x_2,x_3,x_5) + \rho_{4a}(x_1+x_5,x_2,x_3,x_4) + \rho_{4b}(x_1+x_2,x_3,x_4,x_5) }[/math] |
| [math]\displaystyle{ - \rho_3(x_1,x_2,x_3+x_4,x_5) - \rho_{4a}(x_1,x_2,x_3,x_4) }[/math] | |
| [math]\displaystyle{ - \rho_{4b}(x_1,x_3,x_4,x_5) + \rho_3(x_1+x_3,x_2,x_4,x_5). }[/math] |
The "[math]\displaystyle{ \Phi }[/math] around [math]\displaystyle{ \Phi }[/math]" Syzygy
The original syzygy is available at Image:06-1350-PhiAroundPhi.png. A cleaner, minimal picture is
| (Drawn with Asymptote, Syzygies in Asymptote) |
The functional form of this syzygy is
| [math]\displaystyle{ \Phi\Phi(x_1,x_2,x_3,x_4,x_5) = }[/math] | [math]\displaystyle{ \rho_{4b}(x_1+x_4,x_2,x_3,x_5) + \rho_{4b}(x_1,x_2,x_3,x_4) + \rho_{4a}(x_1,x_2+x_3,x_4,x_5) }[/math] |
| [math]\displaystyle{ - \rho_{4b}(x_1,x_2,x_3,x_4+x_5) - \rho_{4a}(x_1+x_2,x_3,x_4,x_5) - \rho_{4a}(x_1,x_2,x_4,x_5). }[/math] |
A Mathematica Verification
The following simulated Mathematica session proves that for our single relation and single syzygy, [math]\displaystyle{ d^2=0 }[/math]. Copy paste it into a live Mathematica session to see that it's right!
In[1]:=
|
d1 = {
rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] +
bp[x1, x3, x4] - bp[x1 + x2, x3, x4] - bp[x1, x2, x4] -
bp[x1 + x4, x2, x3]
};
d2 = {
BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] +
rho3[x1 + x5, x2, x3, x4] - rho3[x1 + x2, x3, x4, x5] -
rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] -
rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] +
rho3[x1 + x3, x2, x4, x5]
};
|
In[3]:=
|
BAroundB[x1, x2, x3, x4, x5] /. d2
|
Out[3]=
|
- rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5]
+ rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5]
+ rho3[x1 + x3, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5]
+ rho3[x1 + x5, x2, x3, x4]
|
In[4]:=
|
BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1
|
Out[4]=
|
0
|



