VasCalc Results - ChordMod4T: Difference between revisions
No edit summary |
No edit summary |
||
| (9 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
This page documents some computational results obtained by using the <b>ChordsMod4T</b> software component of the [[VasCalc]] project. We denote by <math>{\mathcal A}(l,m |
This page documents some computational results obtained by using the <b>ChordsMod4T</b> software component of the [[VasCalc]] project. We denote by <math>{\mathcal A}_n(l,m)</math> the formal (rational) vector space generated by all chord diagrams with <math>n</math> chords on a skeleton of <math>l</math> lines and <math>m</math> circles, modulo the <math>4T</math> relations. The algorithm is straightforward: first all such diagrams are constructed, then relations are introduced iteratively over all possible terms in a <math>4T</math> relation. See the [[VasCalc Documentation - ChordsMod4T| documentation]] for further information about the program and how these results were generated. |
||
===Some Dimensions of <math>{\mathcal A}(l,m |
===Some Dimensions of <math>{\mathcal A}_n(l,m)</math>=== |
||
The tables below give the dimensions of <math>{\mathcal A}(l,m |
The tables below give the dimensions of <math>{\mathcal A}_n(l,m)</math> for various values of <math>l</math>, <math>m</math> and <math>n</math>. Each table corresponds to a fixed value of <math>n</math> - that is, the number of chords. |
||
'''This is work in progress - these numbers are not reliable yet!!!''' |
|||
{| border="1" |
{| border="1" align=center cellspacing=0 |
||
|+ Dimensions of chord diagram spaces with 2 chords |
|+ Dimensions of chord diagram spaces with 2 chords |
||
!rowspan="2" width="100px"|Number of Lines |
!rowspan="2" width="100px"|Number of Lines |
||
| Line 13: | Line 14: | ||
||0||1||2||3||4||5||6||7||8||9 |
||0||1||2||3||4||5||6||7||8||9 |
||
|- align=right |
|- align=right |
||
|0||0||2||8|| |
|0||0|| 2||8||24||59||125||237||413||674||1044 |
||
|- align=right |
|- align=right |
||
|1||2||8|| |
|1||2||8||24||59||125||237||413||674||1044||1550 |
||
|- align=right |
|- align=right |
||
|2||9||25|| |
|2||9||25||60||126||238||414||675||1045||1551||2223 |
||
|- align=right |
|- align=right |
||
|3||28||63|| |
|3||28||63||129||241||417||678||1048||1554||2226||3097 |
||
|- align=right |
|- align=right |
||
|4||69||135|| |
|4||69||135||247||423||684||1054||1560||2232||3103||4209 |
||
|- align=right |
|- align=right |
||
|5||145||257|| |
|5||145||257||433||694||1064||1570||2242||3113||4219||5599 |
||
|- align=right |
|- align=right |
||
|6||272||448|| |
|6||272||448||709||1079||1585||2257||3128||4234||5614||7310 |
||
|- align=right |
|- align=right |
||
|7||469||730|| |
|7||469||730||1100||1606||2278||3149||4255||5635||7331||9388 |
||
|- align=right |
|||
|8||758||1128||1634||2306||3177||4283||5663||7359||9416||11882 |
|||
|- align=right |
|||
|9||1164||1670||2342||3213||4319||5699||7395||9452||11918||14844 |
|||
|} |
|} |
||
<table width=100%><tr> |
|||
<td> |
|||
{| border="1" |
|||
{| border="1" align=center cellspacing=0 |
|||
|+ Dimensions of chord diagram spaces with 3 chords |
|+ Dimensions of chord diagram spaces with 3 chords |
||
!rowspan="2" width="100px"|Number of Lines |
!rowspan="2" width="100px"|Number of Lines |
||
!colspan="7"|Number of Circles |
!colspan="7"|Number of Circles |
||
|- align=right |
|||
| ⚫ | |||
|0||1||2||3||4||5||6 |
|0||1||2||3||4||5||6 |
||
|- align=right |
|- align=right |
||
|0||0||3||19|| |
|0||0||3||19||80||270||770||1918 |
||
|- align=right |
|- align=right |
||
|1||3||19|| |
|1||3||19||80||270||770||1918||4284 |
||
|- align=right |
|- align=right |
||
|2||23|| |
|2||23||88||283||789||1944||4318||8803 |
||
|- align=right |
|||
|3||111||321||845||2021||4419||8931||16876 |
|||
|- align=right |
|||
|4||394||954||2172||4618||9184||17189 |
|||
|- align=right |
|||
|5||1130||2418||4944||9600||17705||31125 |
|||
| ⚫ | |||
</td><td> |
|||
{| border="1" align=center cellspacing=0 |
|||
|+ Dimensions of chord diagram spaces with 4 chords |
|||
!rowspan="2" width="100px"|Number of Lines |
|||
!colspan="6"|Number of Circles |
|||
|- align=right |
|- align=right |
||
| |
|0||1||2||3||4 |
||
|- align=right |
|- align=right |
||
| |
|0||0|| 6||44||241||1063 |
||
|- align=right |
|- align=right |
||
| |
|1||6||44||241||1063||3930 |
||
|- align=right |
|- align=right |
||
| |
|2||60||283||1160||4126 |
||
|} |
|} |
||
</td></tr></table> |
|||
Latest revision as of 06:35, 10 October 2006
This page documents some computational results obtained by using the ChordsMod4T software component of the VasCalc project. We denote by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal A}_n(l,m)} the formal (rational) vector space generated by all chord diagrams with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} chords on a skeleton of lines and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} circles, modulo the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4T} relations. The algorithm is straightforward: first all such diagrams are constructed, then relations are introduced iteratively over all possible terms in a Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4T} relation. See the documentation for further information about the program and how these results were generated.
Some Dimensions of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal A}_n(l,m)}
The tables below give the dimensions of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathcal A}_n(l,m)} for various values of , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle m} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} . Each table corresponds to a fixed value of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} - that is, the number of chords.
This is work in progress - these numbers are not reliable yet!!!
| Number of Lines | Number of Circles | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
| 0 | 0 | 2 | 8 | 24 | 59 | 125 | 237 | 413 | 674 | 1044 |
| 1 | 2 | 8 | 24 | 59 | 125 | 237 | 413 | 674 | 1044 | 1550 |
| 2 | 9 | 25 | 60 | 126 | 238 | 414 | 675 | 1045 | 1551 | 2223 |
| 3 | 28 | 63 | 129 | 241 | 417 | 678 | 1048 | 1554 | 2226 | 3097 |
| 4 | 69 | 135 | 247 | 423 | 684 | 1054 | 1560 | 2232 | 3103 | 4209 |
| 5 | 145 | 257 | 433 | 694 | 1064 | 1570 | 2242 | 3113 | 4219 | 5599 |
| 6 | 272 | 448 | 709 | 1079 | 1585 | 2257 | 3128 | 4234 | 5614 | 7310 |
| 7 | 469 | 730 | 1100 | 1606 | 2278 | 3149 | 4255 | 5635 | 7331 | 9388 |
| 8 | 758 | 1128 | 1634 | 2306 | 3177 | 4283 | 5663 | 7359 | 9416 | 11882 |
| 9 | 1164 | 1670 | 2342 | 3213 | 4319 | 5699 | 7395 | 9452 | 11918 | 14844 |
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||