Notes for AKT-090917-1/0:23:37: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
Let <math>\mathcal{K}_m = \{ m</math>-singular knots <math>\}</math>
Let <math>\mathcal{K}_m = \{ m</math>-singular knots <math>\}</math>

We have <math>V^{(m)}: \mathcal{K}_m \rightarrow A</math>, since <math>V^{(m+1)}=0</math>, <math>V^{(m)}</math> does not distinguish over crossing and under crossings in <math>\mathcal{K}_m</math>.
Given <math>V</math> of type <math>m</math>, We have <math>V^{(m)}: \mathcal{K}_m \rightarrow A</math>.

Since <math>V^{(m+1)}=0</math>, <math>V^{(m)}</math> does not distinguish over crossing and under crossings in <math>\mathcal{K}_m</math>.

Let <math>\mathcal{D}_m = \mathcal{K}_m / ( \mbox{over crossing}=\mbox{under crossing})</math>.
Let <math>\mathcal{D}_m = \mathcal{K}_m / ( \mbox{over crossing}=\mbox{under crossing})</math>.

Hence the '''weight system''' <math> \mathcal{D}_m \rightarrow A</math> given by <math>W_V = V^{(m)}</math> is well-defined.
Hence the '''weight system''' <math> \mathcal{D}_m \rightarrow A</math> given by <math>W_V = V^{(m)}</math> is well-defined.

Revision as of 20:00, 18 September 2009

Let [math]\displaystyle{ \mathcal{K}_m = \{ m }[/math]-singular knots [math]\displaystyle{ \} }[/math]

Given [math]\displaystyle{ V }[/math] of type [math]\displaystyle{ m }[/math], We have [math]\displaystyle{ V^{(m)}: \mathcal{K}_m \rightarrow A }[/math].

Since [math]\displaystyle{ V^{(m+1)}=0 }[/math], [math]\displaystyle{ V^{(m)} }[/math] does not distinguish over crossing and under crossings in [math]\displaystyle{ \mathcal{K}_m }[/math].

Let [math]\displaystyle{ \mathcal{D}_m = \mathcal{K}_m / ( \mbox{over crossing}=\mbox{under crossing}) }[/math].

Hence the weight system [math]\displaystyle{ \mathcal{D}_m \rightarrow A }[/math] given by [math]\displaystyle{ W_V = V^{(m)} }[/math] is well-defined.