Notes for AKT-090917-1/0:20:08: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
mNo edit summary |
||
| Line 1: | Line 1: | ||
Def: Knot invariant <math>V</math> is of '''Vassiliev type <math>m</math>''' if <math>V^{m+1} = 0</math> (on the whole space of <math>m</math>-singular knots) |
Def: Knot invariant <math>V</math> is of '''Vassiliev type <math>m</math>''' if <math>V^{m+1} = 0</math> (on the whole space of <math>m+1</math>-singular knots) |
||
Notation: we drop the superscript in <math>V^{(m)}</math> since for each <math>m</math>, <math>V^{(m)}</math> is only defined for <math>m</math>-singular knots. |
Notation: we drop the superscript in <math>V^{(m)}</math> since for each <math>m</math>, <math>V^{(m)}</math> is only defined for <math>m</math>-singular knots. |
||
Revision as of 19:35, 18 September 2009
Def: Knot invariant [math]\displaystyle{ V }[/math] is of Vassiliev type [math]\displaystyle{ m }[/math] if [math]\displaystyle{ V^{m+1} = 0 }[/math] (on the whole space of [math]\displaystyle{ m+1 }[/math]-singular knots) Notation: we drop the superscript in [math]\displaystyle{ V^{(m)} }[/math] since for each [math]\displaystyle{ m }[/math], [math]\displaystyle{ V^{(m)} }[/math] is only defined for [math]\displaystyle{ m }[/math]-singular knots.