Notes for AKT-090917-1/0:11:09: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 1: Line 1:
Defining 'derivative' for maps from the space of oriented <math>n</math>-singular knots embedded in an oriented copy of <math>\mathbb{R}^3</math> to Abelian group <math>A</math>.
Defining 'derivative' for maps from the space of oriented <math>n</math>-singular knots embedded in an oriented copy of <math>\mathbb{R}^3</math> to Abelian group <math>A</math>.

(Given knot invariant <math>V</math>, <math>V'</math> maps <math>n</math>-singular knots to sums of <math>n-1</math>-singular knots and <math>V^{(m)}</math> maps <math>m</math>-singular knots to <math>A</math> )
(Given knot invariant <math>V</math>, <math>V'</math> maps <math>n</math>-singular knots to sums of <math>n-1</math>-singular knots and <math>V^{(m)}</math> maps <math>m</math>-singular knots to <math>A</math> )

Latest revision as of 19:04, 18 September 2009

Defining 'derivative' for maps from the space of oriented [math]\displaystyle{ n }[/math]-singular knots embedded in an oriented copy of [math]\displaystyle{ \mathbb{R}^3 }[/math] to Abelian group [math]\displaystyle{ A }[/math]. (Given knot invariant [math]\displaystyle{ V }[/math], [math]\displaystyle{ V' }[/math] maps [math]\displaystyle{ n }[/math]-singular knots to sums of [math]\displaystyle{ n-1 }[/math]-singular knots and [math]\displaystyle{ V^{(m)} }[/math] maps [math]\displaystyle{ m }[/math]-singular knots to [math]\displaystyle{ A }[/math] )