Notes for AKT-090917-1/0:11:09: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
Defining 'derivative' for maps from the space of oriented <math>n</math>-singular knots embedded in an oriented copy of <math>\mathbb{R}^3</math> to Abelian group <math>A</math>. |
Defining 'derivative' for maps from the space of oriented <math>n</math>-singular knots embedded in an oriented copy of <math>\mathbb{R}^3</math> to Abelian group <math>A</math>. |
||
(Given knot invariant <math>V</math>, <math>V'</math> maps <math>n</math>-singular knots to sums of <math>n-1</math>-singular knots and <math>V^{(m)}</math> maps <math>m</math>-singular knots to <math>A</math> ) |
(Given knot invariant <math>V</math>, <math>V'</math> maps <math>n</math>-singular knots to sums of <math>n-1</math>-singular knots and <math>V^{(m)}</math> maps <math>m</math>-singular knots to <math>A</math> ) |
||
Latest revision as of 19:04, 18 September 2009
Defining 'derivative' for maps from the space of oriented [math]\displaystyle{ n }[/math]-singular knots embedded in an oriented copy of [math]\displaystyle{ \mathbb{R}^3 }[/math] to Abelian group [math]\displaystyle{ A }[/math]. (Given knot invariant [math]\displaystyle{ V }[/math], [math]\displaystyle{ V' }[/math] maps [math]\displaystyle{ n }[/math]-singular knots to sums of [math]\displaystyle{ n-1 }[/math]-singular knots and [math]\displaystyle{ V^{(m)} }[/math] maps [math]\displaystyle{ m }[/math]-singular knots to [math]\displaystyle{ A }[/math] )