09-240/Classnotes for Tuesday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
(→‎Examples: note for "iff")
(→‎Examples: Addition and multiplication tables.)
Line 38: Line 38:
# <math>\,\!F_7 = \{ 0, 1,2,3,4,5,6 \}</math>
# <math>\,\!F_7 = \{ 0, 1,2,3,4,5,6 \}</math>
# <math>\,\!F_6 = \{ 0, 1,2,3,4,5 \}</math> is not a field (counterexample)
# <math>\,\!F_6 = \{ 0, 1,2,3,4,5 \}</math> is not a field (counterexample)

{|
|
{| border="1" cellspacing="0"
|+ Ex. 4
|-
! + !! 0 !! 1
|-
! 0 || 0 || 1
|-
! 1 || 1 || 0
|-
|}

|
{| border="1" cellspacing="0"
|+ Ex. 4
|-
! × !! 0 !! 1
|-
! 0 || 0 || 0
|-
! 1 || 0 || 1
|}

|-
|
{| border="1" cellspacing="0"
|+ Ex. 5
|-
! + !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6
|-
! 0 || 0 || 1 || 2 || 3 || 4 || 5 || 6
|-
! 1 || 1 || 2 || 3 || 4 || 5 || 6 || 0
|-
! 2 || 2 || 3 || 4 || 5 || 6 || 0 || 1
|-
! 3 || 3 || 4 || 5 || 6 || 0 || 1 || 2
|-
! 4 || 4 || 5 || 6 || 0 || 1 || 2 || 3
|-
! 5 || 5 || 6 || 0 || 1 || 2 || 3 || 4
|-
! 6 || 6 || 0 || 1 || 2 || 3 || 4 || 5
|}

|
{|border="1" cellspacing="0"
|+ Ex. 5
|-
! × !! 0 !! 1 !! 2 !! 3 !! 4 !! 5 !! 6
|-
! 0 || 0 || 0 || 0 || 0 || 0 || 0 || 0
|-
! 1 || 0 || 1 || 2 || 3 || 4 || 5 || 0
|-
! 2 || 0 || 2 || 4 || 6 || 1 || 3 || 1
|-
! 3 || 0 || 3 || 6 || 2 || 5 || 1 || 2
|-
! 4 || 0 || 4 || 1 || 5 || 2 || 6 || 3
|-
! 5 || 0 || 5 || 3 || 1 || 6 || 4 || 4
|-
! 6 || 0 || 6 || 5 || 4 || 3 || 2 || 5
|}
|}

'''Theorem''': <math>\,\!F_P </math> for <math>p>1</math> is a field ''iff'' <small>([http://en.wikipedia.org/wiki/If_and_only_if if and only if])</small> <math>p</math> is a prime number
'''Theorem''': <math>\,\!F_P </math> for <math>p>1</math> is a field ''iff'' <small>([http://en.wikipedia.org/wiki/If_and_only_if if and only if])</small> <math>p</math> is a prime number



Revision as of 21:52, 15 September 2009

The real numbers A set [math]\displaystyle{ \mathbb R }[/math] with two binary operators and two special elements [math]\displaystyle{ 0, 1 \in \mathbb R }[/math] s.t.

[math]\displaystyle{ F1.\quad \forall a, b \in \mathbb R, a + b = b + a \mbox{ and } a \cdot b = b \cdot a }[/math]
[math]\displaystyle{ F2.\quad \forall a, b, c, (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c) }[/math]
[math]\displaystyle{ \mbox{(So for any real numbers } a_1, a_2, ..., a_n, \mbox{ one can sum them in any order and achieve the same result.} }[/math]
[math]\displaystyle{ F3.\quad \forall a, a + 0 = a \mbox{ and } a \cdot 0 = 0 \mbox{ and } a \cdot 1 = a }[/math]
[math]\displaystyle{ F4.\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1 }[/math]
[math]\displaystyle{ \mbox{So } a + (-a) = 0 \mbox{ and } a \cdot a^{-1} = 1 }[/math]
[math]\displaystyle{ \mbox{(So } (a + b) \cdot (a - b) = a^2 - b^2) }[/math]
[math]\displaystyle{ \forall a, \exists x, x \cdot x = a \mbox{ or } a + x \cdot x = 0 }[/math]
Note: or means inclusive or in math.
[math]\displaystyle{ F5.\quad (a + b) \cdot c = a \cdot c + b \cdot c }[/math]

Definition: A field is a set F with two binary operators [math]\displaystyle{ \,\!+ }[/math]: F×FF, [math]\displaystyle{ \times\,\! }[/math]: F×FF and two elements [math]\displaystyle{ 0, 1 \in \mathbb R }[/math] s.t.

[math]\displaystyle{ F1\quad \mbox{Commutativity } a + b = b + a \mbox{ and } a \cdot b = b \cdot a \forall a, b \in F }[/math]
[math]\displaystyle{ F2\quad \mbox{Associativity } (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c) }[/math]
[math]\displaystyle{ F3\quad a + 0 = a, a \cdot 1 = a }[/math]
[math]\displaystyle{ F4\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1 }[/math]
[math]\displaystyle{ F5\quad \mbox{Distributivity } (a + b) \cdot c = a \cdot c + b \cdot c }[/math]

Examples

  1. [math]\displaystyle{ F = \mathbb R }[/math]
  2. [math]\displaystyle{ F = \mathbb Q }[/math]
  3. [math]\displaystyle{ \mathbb C = \{ a + bi : a, b \in \mathbb R \} }[/math]
    [math]\displaystyle{ i = \sqrt{-1} }[/math]
    [math]\displaystyle{ \,\!(a + bi) + (c + di) = (a + c) + (b + d)i }[/math]
    [math]\displaystyle{ \,\!0 = 0 + 0i, 1 = 1 + 0i }[/math]
  4. [math]\displaystyle{ \,\!F_2 = \{ 0, 1 \} }[/math]
  5. [math]\displaystyle{ \,\!F_7 = \{ 0, 1,2,3,4,5,6 \} }[/math]
  6. [math]\displaystyle{ \,\!F_6 = \{ 0, 1,2,3,4,5 \} }[/math] is not a field (counterexample)
Ex. 4
+ 0 1
0 0 1
1 1 0
Ex. 4
× 0 1
0 0 0
1 0 1
Ex. 5
+ 0 1 2 3 4 5 6
0 0 1 2 3 4 5 6
1 1 2 3 4 5 6 0
2 2 3 4 5 6 0 1
3 3 4 5 6 0 1 2
4 4 5 6 0 1 2 3
5 5 6 0 1 2 3 4
6 6 0 1 2 3 4 5
Ex. 5
× 0 1 2 3 4 5 6
0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 0
2 0 2 4 6 1 3 1
3 0 3 6 2 5 1 2
4 0 4 1 5 2 6 3
5 0 5 3 1 6 4 4
6 0 6 5 4 3 2 5

Theorem: [math]\displaystyle{ \,\!F_P }[/math] for [math]\displaystyle{ p\gt 1 }[/math] is a field iff (if and only if) [math]\displaystyle{ p }[/math] is a prime number

Tedious Theorem

  1. [math]\displaystyle{ a + b = c + d \Rightarrow a = c }[/math] "cancellation property"
  2. [math]\displaystyle{ a \cdot b = c \cdot b , (b \ne 0) \Rightarrow a = c }[/math]

...