Talk:06-240/Homework Assignment 5: Difference between revisions
No edit summary |
m (Reverted edit of 62.231.243.137, changed back to last version by Drorbn) |
||
Line 10: | Line 10: | ||
Hi, I think this site might help. http://mathforum.org/library/drmath/view/51973.html. [[User:Wongpak|Wongpak]] 07:06, 16 October 2006 (EDT) |
Hi, I think this site might help. http://mathforum.org/library/drmath/view/51973.html. [[User:Wongpak|Wongpak]] 07:06, 16 October 2006 (EDT) |
||
Question 29a: The suggestion of beginning with <math>W_1^{}\cap W_2</math> and extending the bases of <math>W_1</math> and <math>W_2</math> seems backward to me. We know the number of elements in <math>W_1</math> and <math>W_2</math> but we don't know the number of intersecting elements. Should we ignore this suggestion and just prove <math>\mbox{dim}(W_1 |
Question 29a: The suggestion of beginning with <math>W_1^{}\cap W_2</math> and extending the bases of <math>W_1</math> and <math>W_2</math> seems backward to me. We know the number of elements in <math>W_1</math> and <math>W_2</math> but we don't know the number of intersecting elements. Should we ignore this suggestion and just prove <math>\mbox{dim}(W_1+W_2)^{}=\mbox{dim}(W_1)+\mbox{dim}(W_2)-\mbox{dim}(W_1\cap W_2)</math>? |
||
The suggestion is not "extending the bases of" but "extending to bases of". Anyway, you are welcome to try and ignore the suggestion and prove the end result directly, except you'll find that there is no way to do that other than to follow the suggestion... --[[User:Drorbn|Drorbn]] 10:58, 16 October 2006 (EDT) |
The suggestion is not "extending the bases of" but "extending to bases of". Anyway, you are welcome to try and ignore the suggestion and prove the end result directly, except you'll find that there is no way to do that other than to follow the suggestion... --[[User:Drorbn|Drorbn]] 10:58, 16 October 2006 (EDT) |
Latest revision as of 05:15, 5 June 2007
For the test, do we have to know the LaGrange formula? Although not covered in class, it is in Section 1.6, which we've been asked to read.
The test material will only be announced on Tuesday. --Drorbn 13:02, 14 October 2006 (EDT)
For question 28: "Let V be a finite-dimensional vector space over C with dimension n. Prove that if V is now regarded as a vector space over R, then dim V = 2n"... Is this a formally defined concept? (that is, while it is obvious what they mean, how could you state it rigorously)
is a subset of , so if you know how to multiply by scalars in , you automatically know how to multiply by scalar in . Thus every vector space over is also a vector space over (and in the same way, also over ). --Drorbn 22:01, 14 October 2006 (EDT)
Hi, I think this site might help. http://mathforum.org/library/drmath/view/51973.html. Wongpak 07:06, 16 October 2006 (EDT)
Question 29a: The suggestion of beginning with and extending the bases of and seems backward to me. We know the number of elements in and but we don't know the number of intersecting elements. Should we ignore this suggestion and just prove ?
The suggestion is not "extending the bases of" but "extending to bases of". Anyway, you are welcome to try and ignore the suggestion and prove the end result directly, except you'll find that there is no way to do that other than to follow the suggestion... --Drorbn 10:58, 16 October 2006 (EDT)