07-401/Class Notes for March 7: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
{{07-401/Navigation}}
{{07-401/Navigation}}
{{In Preparation}}
{{In Preparation}}

==Class Plan==

Some discussion of the [[07-401/Term Test|term test]] and [[07-401/Homework Assignment 6|HW6]].

===Extension Fields===

'''Definition.''' An extension field <math>E</math> of <math>F</math>.

'''Theorem.''' For every non-constant polynomial <math>f</math> in <math>F[x]</math> there is an extension <math>E</math> of <math>F</math> in which <math>f</math> has a zero.

'''Example''' <math>x^2+1</math> over <math>{\mathbb R}</math>.

'''Example''' <math>x^5+2x^2+2x+2=(x^2+1)(x^3+2x+2)</math> over <math>{\mathbb Z}/3</math>.

'''Definition.''' <math>F(a_1,\ldots,a_n)</math>.

'''Theorem.''' If <math>a</math> is a root of an irreducible polynomial <math>p\in F[x]</math>, within some extension field <math>E</math> of <math>F</math>, then <math>F(a)\cong F[a]/\langle p\rangle</math>, and <math>\{1,a,a^2,\ldots,a^{n-1}\}</math> (here <math>n=\deg p</math>) is a basis for <math>F(a)</math> over <math>F</math>.

'''Corollary.''' In this case, <math>F(a)</math> depends only on <math>p</math>.

'''Corollary.''' If <math>p\in F[x]</math> irreducible over <math>F</math>, <math>\phi:F\to F'</math> an isomorphism, <math>a</math> a root of <math>p</math> (in some <math>E/F</math>), <math>a'</math> a root of <math>\phi(p)</math> in some <math>E'/F'</math>, then <math>F[a]\cong F'[a']</math>.

'''Theorem.''' A splitting field always exists.

'''Example.''' <math>x^4-x^2-2=(x^2-2)(x^2+1)</math> over <math>{\mathbb Q}</math>.

===Splitting Fields===

'''Definition.''' <math>f\in F[x]</math> splits in <math>E/F</math>, a splitting field for <math>f</math> over <math>F</math>.

===Zeros of Irreducible Polynomials===

===Perfect Fields===

Revision as of 13:53, 7 March 2007

In Preparation

The information below is preliminary and cannot be trusted! (v)

Class Plan

Some discussion of the term test and HW6.

Extension Fields

Definition. An extension field of .

Theorem. For every non-constant polynomial in there is an extension of in which has a zero.

Example over .

Example over .

Definition. .

Theorem. If is a root of an irreducible polynomial , within some extension field of , then , and (here ) is a basis for over .

Corollary. In this case, depends only on .

Corollary. If irreducible over , an isomorphism, a root of (in some ), a root of in some , then .

Theorem. A splitting field always exists.

Example. over .

Splitting Fields

Definition. splits in , a splitting field for over .

Zeros of Irreducible Polynomials

Perfect Fields