User:Drorbn/06-1350-HW4: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
|||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
===The Generators=== |
===The Generators=== |
||
Our generators are <math>T</math>, <math>R</math>, <math> |
Our generators are <math>T</math>, <math>R</math>, <math>\Phi</math> and <math>B^{\pm}</math>: |
||
{| align=center |
{| align=center cellpadding=10 style="border: solid orange 1px" |
||
|- align=center |
|- align=center valign=middle |
||
|align=left|Picture |
|||
⚫ | |||
| |
| |
||
| |
| |
||
Line 10: | Line 10: | ||
|[[Image:06-1350-BPlus.svg|100px]] |
|[[Image:06-1350-BPlus.svg|100px]] |
||
| |
| |
||
|- align=center |
|- align=center valign=middle |
||
|align=left|Generator |
|||
|<math>T</math> |
|<math>T</math> |
||
|<math>R</math> |
|<math>R</math> |
||
|<math> |
|<math>\Phi</math> |
||
⚫ | |||
|<math>B^+</math> |
|<math>B^+</math> |
||
|<math>B^-</math> |
|<math>B^-</math> |
||
|- align=center valign=middle |
|||
|align=left|Perturbation |
|||
|<math>t</math> |
|||
|<math>r</math> |
|||
|<math>\varphi</math> |
|||
⚫ | |||
|<math>b^-</math> |
|||
|} |
|} |
||
Line 22: | Line 29: | ||
====The Reidemeister Move R3==== |
====The Reidemeister Move R3==== |
||
The picture is |
The picture (with three sides of the shielding removed) is |
||
[[Image:06-1350-R4.svg|400px|center]] |
[[Image:06-1350-R4.svg|400px|center]] |
||
In formulas, this is |
In formulas, this is |
||
<center><math>(1230)^\star B^+ (1213)^\star B^+ (1023)^\star B^+ = (1123)^\star B^+ (1203)^\star B^+ (1231)^\star B^+</math>.</center> |
<center><math>(1230)^\star B^+ (1213)^\star B^+ (1023)^\star B^+ = (1123)^\star B^+ (1203)^\star B^+ (1231)^\star B^+</math>.</center> |
||
Linearized and written in functional form, this becomes |
|||
Thus the R3 component of <math>d</math> is |
|||
{| align=center |
|||
<center><math>(1230)^\star b^+ +(1213)^\star b^+ +(1023)^\star b^+ -(1123)^\star b^+ -(1203)^\star b^+ -(1231)^\star b^+</math>.</center> |
|||
|- |
|||
|<math>\rho_3(x_1, x_2, x_3, x_4) = </math> |
|||
|<math>b^+(x_1,x_2,x_3) + b^+(x_1+x_3,x_2,x_4) + b^+(x_1,x_3,x_4)</math> |
|||
|- |
|||
⚫ | |||
|<math>- b^+(x_1+x_2,x_3,x_4) - b^+(x_1,x_2,x_4) - b^+(x_1+x_4,x_2,x_3).</math> |
|||
|} |
|||
===The Syzygies=== |
===The Syzygies=== |
||
====The "B around B" Syzygy==== |
|||
The picture, with all shielding removed, is |
|||
{| align=center |
|||
|- align=center |
|||
|[[Image:06-1350-BAroundB.svg|center]] |
|||
|- |
|||
|align=right|(Drawn with [http://www.inkscape.org/ Inkscape])<br>(note that lower quality pictures are also acceptable) |
|||
|} |
|||
The functional form of this syzygy is |
|||
{| align=center |
|||
|- |
|||
|<math>BB(x_1,x_2,x_3,x_4,x_5) = </math> |
|||
|<math>\rho_3(x_1, x_2, x_3, x_5) + \rho_3(x_1 + x_5, x_2, x_3, x_4) - \rho_3(x_1 + x_2, x_3, x_4, x_5)</math> |
|||
|- |
|||
| |
|||
|<math>- \rho_3(x_1, x_2, x_4, x_5) - \rho_3(x_1 + x_4, x_2, x_3, x_5) - \rho_3(x_1, x_2, x_3, x_4)</math> |
|||
|- |
|||
| |
|||
|<math>+ \rho_3(x_1, x_3, x_4, x_5) + \rho_3(x_1 + x_3, x_2, x_4, x_5).</math> |
|||
|} |
|||
===A Mathematica Verification=== |
===A Mathematica Verification=== |
||
The following simulated Mathematica session proves that for our single relation and single syzygy, <math>d^2=0</math>. Copy paste it into a live Mathematica session to see that it's right! |
|||
{{In|n=1|in=<nowiki>d1 = { |
|||
rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] + |
|||
bp[x1, x3, x4] - bp[x1 + x2, x3, x4] - bp[x1, x2, x4] - |
|||
bp[x1 + x4, x2, x3] |
|||
}; |
|||
d2 = { |
|||
BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] + |
|||
rho3[x1 + x5, x2, x3, x4] - rho3[x1 + x2, x3, x4, x5] - |
|||
rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] - |
|||
rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] + |
|||
rho3[x1 + x3, x2, x4, x5] |
|||
};</nowiki>}} |
|||
{{InOut|n=3|in=<nowiki>BAroundB[x1, x2, x3, x4, x5] /. d2</nowiki>|out=<nowiki>- rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5] |
|||
+ rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5] |
|||
+ rho3[x1 + x3, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] |
|||
+ rho3[x1 + x5, x2, x3, x4]</nowiki>}} |
|||
{{InOut|n=4|in=<nowiki>BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1</nowiki>|out=<nowiki>0</nowiki>}} |
Latest revision as of 18:41, 20 November 2006
The Generators
Our generators are , , and :
Picture | |||||
Generator | |||||
Perturbation |
The Relations
The Reidemeister Move R3
The picture (with three sides of the shielding removed) is
In formulas, this is
Linearized and written in functional form, this becomes
The Syzygies
The "B around B" Syzygy
The picture, with all shielding removed, is
(Drawn with Inkscape) (note that lower quality pictures are also acceptable) |
The functional form of this syzygy is
A Mathematica Verification
The following simulated Mathematica session proves that for our single relation and single syzygy, . Copy paste it into a live Mathematica session to see that it's right!
In[1]:=
|
d1 = {
rho3[x1_, x2_, x3_, x4_] :> bp[x1, x2, x3] + bp[x1 + x3, x2, x4] +
bp[x1, x3, x4] - bp[x1 + x2, x3, x4] - bp[x1, x2, x4] -
bp[x1 + x4, x2, x3]
};
d2 = {
BAroundB[x1_, x2_, x3_, x4_, x5_] :> rho3[x1, x2, x3, x5] +
rho3[x1 + x5, x2, x3, x4] - rho3[x1 + x2, x3, x4, x5] -
rho3[x1, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5] -
rho3[x1, x2, x3, x4] + rho3[x1, x3, x4, x5] +
rho3[x1 + x3, x2, x4, x5]
};
|
In[3]:=
|
BAroundB[x1, x2, x3, x4, x5] /. d2
|
Out[3]=
|
- rho3[x1, x2, x3, x4] + rho3[x1, x2, x3, x5] - rho3[x1, x2, x4, x5]
+ rho3[x1, x3, x4, x5] - rho3[x1 + x2, x3, x4, x5]
+ rho3[x1 + x3, x2, x4, x5] - rho3[x1 + x4, x2, x3, x5]
+ rho3[x1 + x5, x2, x3, x4]
|
In[4]:=
|
BAroundB[x1, x2, x3, x4, x5] /. d2 /. d1
|
Out[4]=
|
0
|