06-240/Classnotes For Thursday, September 21: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
(Some updates)
Line 12: Line 12:
#<math> \forall x\; \exists\ y \ s.t.\ x+y=0 \ </math>
#<math> \forall x\; \exists\ y \ s.t.\ x+y=0 \ </math>
#<math> 1.x=x \ </math>
#<math> 1.x=x \ </math>
#<math> a(bx=(ab)x \ </math>
#<math> a(bx)=(ab)x \ </math>
#<math> a(x+y)=ax+ay \ </math>
#<math> a(x+y)=ax+ay \ </math>
#<math> (a+b)x=ax+bx \ </math>
#<math> (a+b)x=ax+bx \ </math>
Line 31: Line 31:
====''Examples''====
====''Examples''====
'''Ex.1.'''
'''Ex.1.'''
<math> F^n= \big\{ (a_1,a_2,a_3,...,a_{n-1},a_n):\forall i\ a_i \in F \big\} </math> <br/>
<math> F^n= \lbrace(a_1,a_2,a_3,...,a_{n-1},a_n):\forall i\ a_i \in F \rbrace </math> <br/>
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> x=(a_1,...,a_2)\ y=(b_1,...,b_2)\ </math> <br/>
<math> x=(a_1,...,a_2)\ y=(b_1,...,b_2)\ </math> <br/>
Line 38: Line 38:
<math> a\in F\ ax=(aa_1,aa_2,...,aa_n) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,...,aa_n) </math> <br/>
<math> In \ \mathbb{Q}^3 \ ( \frac{3}{2},-2,7)+( \frac{-3}{2}, \frac{1}{3},240)=(0, \frac{-5}{3},247) </math> <br/>
<math> In \ \mathbb{Q}^3 \ ( \frac{3}{2},-2,7)+( \frac{-3}{2}, \frac{1}{3},240)=(0, \frac{-5}{3},247) </math> <br/>
<math> 7( \frac{1}{5},\frac{1}{7},\frac{1}{9})=( \frac{7}{5},1,\frac{7}{9}) </math> <br/>
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/>
'''Ex.2.'''
'''Ex.2.'''
<math> V=M_{m \times n}(F)=\Bigg\{\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots &
<math> V=M_{m\times n}(F)=\lbrace\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots &
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \Bigg\} </math> <br/>
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \rbrace </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
Addition by adding entry by entry:
Add by adding entry by entry:<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/>

Multiplication by a is multiplication of all entries by a. <br/>
<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/>

Multiplication by multiplying scalar c to all entries by M.

<math> c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix}</math> <br/> <br/>

Zero matrix has all entries = 0:

<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots &
<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots &
& \vdots \\ 0 & \cdots & 0\end{pmatrix} </math> <br/>
& \vdots \\ 0 & \cdots & 0\end{pmatrix} </math> <br/>
Line 58: Line 66:
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/>
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/>
<math> (f+g)(t)=f(t)+g(t)\ for\ any\ t\in S </math> <br/>
<math> (f+g)(t)=f(t)+g(t)\ for\ any\ t\in S </math> <br/>
<math> (af)(t)=a.f(t)\ </math>
<math> (af)(t)=a\cdot f(t)\ </math>

Revision as of 08:42, 26 September 2006

A force has a direction & a magnitude.

Force Vectors

  1. There is a special force vector called 0.
  2. They can be added.
  3. They can be multiplied by any scalar.

====Properties==== (convention: x,y,z-vectors; a,b,c-scalars)

=====Definition===== Let F be a field "of scalars". A vector space over F is a set V (of "vectors") along with two operations:

, so that

9.

Examples

Ex.1.







Ex.2.

Addition by adding entry by entry:


Multiplication by multiplying scalar c to all entries by M.



Zero matrix has all entries = 0:


Ex.3. form a vector space over .
Ex.4. F is a vector space over itself.
Ex.5. is a vector space over .
Ex.6. Let S be a set. Let