|
|
Line 34: |
Line 34: |
|
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/> |
|
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/> |
|
<math> x=(a_1,...,a_2)\ y=(b_1,...,b_2)\ </math> <br/> |
|
<math> x=(a_1,...,a_2)\ y=(b_1,...,b_2)\ </math> <br/> |
|
<math> x+y:=(a_1=b_1,a_2+b_2,...,a_n+b_n)\ </math> <br/> |
|
<math> x+y:=(a_1+b_1,a_2+b_2,...,a_n+b_n)\ </math> <br/> |
|
<math> 0_{F^n}=(0,...,0) </math> <br/> |
|
<math> 0_{F^n}=(0,...,0) </math> <br/> |
|
<math> a\in F\ ax=(aa_1,aa_2,...,aa_n) </math> <br/> |
|
<math> a\in F\ ax=(aa_1,aa_2,...,aa_n) </math> <br/> |
Revision as of 10:53, 24 September 2006
A force has a direction & a magnitude.
Force Vectors
- There is a special force vector called 0.
- They can be added.
- They can be multiplied by any scalar.
====Properties==== (convention: x,y,z-vectors; a,b,c-scalars)
=====Definition===== Let F be a field "of scalars". A vector space over F is a set V (of "vectors") along with two operations:
- , so that
9.
Examples
Ex.1.
Ex.2.
Add by adding entry by entry:
Multiplication by a is multiplication of all entries by a.
Ex.3.
form a vector space over .
Ex.4.
F is a vector space over itself.
Ex.5.
is a vector space over .
Ex.6.
Let S be a set. Let