Notes for AKT-140124/0:23:30: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Created page with "Let <math>\Lambda</math> be a symmetric, positive definite, non-singular square matrix. Then we have the following: <math> <x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y)> = ...")
 
No edit summary
Line 1: Line 1:
Let <math>\Lambda</math> be a symmetric, positive definite, non-singular square matrix. Then we have the following:
Let <math>\Lambda</math> be a symmetric, positive definite, non-singular square matrix. Then we have the following:


<math> <x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y)> = <x,\Lambda x> - <x, y> -<\Lambda^{-1}y, \Lambda x> + <\Lambda^{-1}y,y> </math>.
<math> \langle x - \Lambda^{-1} y, \Lambda(x - \Lambda^{-1}y)\rangle = <x,\Lambda x> - <x, y> -<\Lambda^{-1}y, \Lambda x> + <\Lambda^{-1}y,y> </math>.


We have <math><\Lambda^{-1}y, \Lambda x> = <x,y> </math> and <math><\Lambda^{-1}y,y> = <y,\Lambda^{-1}y></math> since <math>\Lambda</math> is symmetric.
We have <math><\Lambda^{-1}y, \Lambda x> = <x,y> </math> and <math><\Lambda^{-1}y,y> = <y,\Lambda^{-1}y></math> since <math>\Lambda</math> is symmetric.

Revision as of 11:17, 14 June 2018

Let be a symmetric, positive definite, non-singular square matrix. Then we have the following:

.

We have and since is symmetric.

From the above, we see that