Notes for AKT-140224/0:22:08: Difference between revisions
(Created page with "We will check that the prospective Lie algebra $g = \mathds{F}^2$ satisfies the Jacobi identity $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0$, and thus is indeed a Lie algebra. In c...") |
No edit summary |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
We will check that the prospective Lie algebra $g = |
We will check that the prospective Lie algebra $g = F^2$ satisfies the Jacobi identity $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0$, and thus is indeed a Lie algebra. In contrast with the notation given in lecture, let $\alpha$ and $\beta$ be the basis elements of $F^2$ over $F$, so that $F^2 = \{a\alpha + b\beta: a, b \in F\}$. Now, let $x = a_1\alpha + a_2\beta$, $y = b_1\alpha + b_2\beta$, and $z = c_1\alpha + c_2\beta$ be arbitrary elements in $F^2$. |
||
Using bilinearity, |
Using bilinearity, |
||
Line 5: | Line 5: | ||
$[y,z] = b_1c_1[\alpha,\alpha] + b_1c_2[\alpha, \beta] + b_2c_1[\beta,\alpha] + b_2c_2[\beta,\beta]$ |
$[y,z] = b_1c_1[\alpha,\alpha] + b_1c_2[\alpha, \beta] + b_2c_1[\beta,\alpha] + b_2c_2[\beta,\beta]$ |
||
Since $[\alpha, \alpha] = [\beta,\beta] = 0$, $[\alpha, \beta] = \alpha$, and $[\beta,\alpha] = -\alpha$, this evaluates to $$[y,z] = (b_1c_2 - b_2c_1)\alpha$$ |
Since $[\alpha, \alpha] = [\beta,\beta] = 0$, $[\alpha, \beta] = \alpha$, and $[\beta,\alpha] = -\alpha$, this evaluates to $$[y,z] = (b_1c_2 - b_2c_1)\alpha$$ Similar calculations yield $$[z,x] = (c_1a_2 - c_2a_1)\alpha$$ and $$[x,y] = (a_1b_2 - a_2b_1)\alpha$$ Thus, $$[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = (a_2(b_1c_2 - b_2c_1) + b_2(c_1a_2-c_2a_1) + c_2(a_1b_2+a_2b_1))[\beta, \alpha]$$ |
||
$$= -\alpha(a_2b_1c_2 - a_2b_2c_1 + a_2b_2c_1 - a_1b_2c_2 + a_1b_2c_2 - a_2b_1c_2) = 0$$ |
|||
As a result, the Jacobi identity holds. |
Latest revision as of 21:54, 12 June 2018
We will check that the prospective Lie algebra $g = F^2$ satisfies the Jacobi identity $[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = 0$, and thus is indeed a Lie algebra. In contrast with the notation given in lecture, let $\alpha$ and $\beta$ be the basis elements of $F^2$ over $F$, so that $F^2 = \{a\alpha + b\beta: a, b \in F\}$. Now, let $x = a_1\alpha + a_2\beta$, $y = b_1\alpha + b_2\beta$, and $z = c_1\alpha + c_2\beta$ be arbitrary elements in $F^2$.
Using bilinearity,
$[y,z] = b_1c_1[\alpha,\alpha] + b_1c_2[\alpha, \beta] + b_2c_1[\beta,\alpha] + b_2c_2[\beta,\beta]$
Since $[\alpha, \alpha] = [\beta,\beta] = 0$, $[\alpha, \beta] = \alpha$, and $[\beta,\alpha] = -\alpha$, this evaluates to $$[y,z] = (b_1c_2 - b_2c_1)\alpha$$ Similar calculations yield $$[z,x] = (c_1a_2 - c_2a_1)\alpha$$ and $$[x,y] = (a_1b_2 - a_2b_1)\alpha$$ Thus, $$[x,[y,z]] + [y,[z,x]] + [z,[x,y]] = (a_2(b_1c_2 - b_2c_1) + b_2(c_1a_2-c_2a_1) + c_2(a_1b_2+a_2b_1))[\beta, \alpha]$$ $$= -\alpha(a_2b_1c_2 - a_2b_2c_1 + a_2b_2c_1 - a_1b_2c_2 + a_1b_2c_2 - a_2b_1c_2) = 0$$
As a result, the Jacobi identity holds.