Notes for AKT-170113/0:50:48: Difference between revisions
From Drorbn
Jump to navigationJump to search
(Created page with "{{Roland}} At 38:12 Dror mentions a solution to CYBE already gives a knot invariant by setting <math>R = 1 + hr + \frac{1}{2!}h^2r^2</math> and working modulo <math >h^3 </mat...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Roland}} At 38:12 Dror mentions a solution to CYBE already gives a knot invariant by setting <math>R = 1 + hr + \frac{1}{2!}h^2r^2</math> and working modulo <math >h^3 </math>. |
{{Roland}} At 38:12 Dror mentions a solution to CYBE already gives a knot invariant by setting <math>R = 1 + hr + \frac{1}{2!}h^2r^2</math> and working modulo <math >h^3 </math>. |
||
I put the <math>h^2</math> term to make the inverse <math>R^{-1}</math> be identical but with negative <math>h</math>, the factorial is just a hint of more to come. |
I put the <math>h^2</math> term to make the inverse <math>R^{-1}</math> be identical but with negative <math>h</math>, the factorial is just a hint of more to come. |
||
I thought it was fun to have an example of this in <math>U(sl_2)</math> where you can check that <math>r_{ |
I thought it was fun to have an example of this in <math>U(sl_2)</math> where you can check that <math>r_{ij} = E_iF_j + \frac{1}{4} H_iH_j</math> is a solution to CYBE. |
Revision as of 07:22, 14 January 2017
Roland At 38:12 Dror mentions a solution to CYBE already gives a knot invariant by setting and working modulo . I put the term to make the inverse be identical but with negative , the factorial is just a hint of more to come. I thought it was fun to have an example of this in where you can check that is a solution to CYBE.