14-240/Classnotes for Monday September 22: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 4: | Line 4: | ||
The Fundamantal Theorem of Algebra: |
The Fundamantal Theorem of Algebra: |
||
<math> |
<math>a_n \times z^{n} + a_n-1 \times z^{n-1} + \dots + a_0</math> |
||
where <math> |
where <math>a_i \in C and a_i != 0</math> has a soluion <math>z \in C</math> |
||
In particular, <math>z^{2} - 1 = 0</math> has a solution. |
In particular, <math>z^{2} - 1 = 0</math> has a solution. |
||
Line 14: | Line 14: | ||
Definition of Vector Space: |
Definition of Vector Space: |
||
A "Vector Space" over a field F is a set V with a special element <math> |
A "Vector Space" over a field F is a set V with a special element <math>O_v \in V</math> and two binary operations: |
||
* <math>+ : V \times V -> V</math> |
* <math>+ : V \times V -> V</math> |
||
* <math>\times : V \times V -> V</math> |
* <math>\times : V \times V -> V</math> |
||
s.t. |
s.t. |
||
* <math> |
* <math>VS_1 : \forall x, y \in V, x + y = y + x</math>. |
||
* <math> |
* <math>VS_2 : \forall x, y, z \in V, x + (y + z) = (x + y) + z</math>. |
||
* <math> |
* <math>VS_3 : \forall x \in V, x + 0 = x</math>. |
||
* <math> |
* <math>VS_4 : \forall x \in V, \exists y \in V, x + y = 0</math>. |
||
* <math> |
* <math>VS_5 : \forall x \in V, 1 \times x = x</math>. |
||
* <math> |
* <math>VS_6 : \forall a, b \in F, \forall x \in V, a(bx) = (ab)x</math>. |
||
* <math> |
* <math>VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>. |
||
* <math> |
* <math>VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>. |
Revision as of 22:03, 24 September 2014
Polar coordinates:
The Fundamantal Theorem of Algebra: where has a soluion In particular, has a solution.
- Forces can multiple by a "scalar"(number).
No "multiplication" of forces.
Definition of Vector Space:
A "Vector Space" over a field F is a set V with a special element and two binary operations:
s.t.
- .
- .
- .
- .
- .
- .
- .
- .