14-240/Classnotes for Monday September 22: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 4: Line 4:


The Fundamantal Theorem of Algebra:
The Fundamantal Theorem of Algebra:
<math>\a_n \times z^{n} + \a_n-1 \times z^{n-1} + \dots + \a_0</math>
<math>a_n \times z^{n} + a_n-1 \times z^{n-1} + \dots + a_0</math>
where <math>\a_i \in C and \a_i != 0</math> has a soluion <math>z \in C</math>
where <math>a_i \in C and a_i != 0</math> has a soluion <math>z \in C</math>
In particular, <math>z^{2} - 1 = 0</math> has a solution.
In particular, <math>z^{2} - 1 = 0</math> has a solution.


Line 14: Line 14:


Definition of Vector Space:
Definition of Vector Space:
A "Vector Space" over a field F is a set V with a special element <math>\O_v \in V</math> and two binary operations:
A "Vector Space" over a field F is a set V with a special element <math>O_v \in V</math> and two binary operations:
* <math>+ : V \times V -> V</math>
* <math>+ : V \times V -> V</math>
* <math>\times : V \times V -> V</math>
* <math>\times : V \times V -> V</math>


s.t.
s.t.
* <math>\VS_1 : \forall x, y \in V, x + y = y + x</math>.
* <math>VS_1 : \forall x, y \in V, x + y = y + x</math>.
* <math>\VS_2 : \forall x, y, z \in V, x + (y + z) = (x + y) + z</math>.
* <math>VS_2 : \forall x, y, z \in V, x + (y + z) = (x + y) + z</math>.
* <math>\VS_3 : \forall x \in V, x + 0 = x</math>.
* <math>VS_3 : \forall x \in V, x + 0 = x</math>.
* <math>\VS_4 : \forall x \in V, \exists y \in V, x + y = 0</math>.
* <math>VS_4 : \forall x \in V, \exists y \in V, x + y = 0</math>.
* <math>\VS_5 : \forall x \in V, 1 \times x = x</math>.
* <math>VS_5 : \forall x \in V, 1 \times x = x</math>.
* <math>\VS_6 : \forall a, b \in F, \forall x \in V, a(bx) = (ab)x</math>.
* <math>VS_6 : \forall a, b \in F, \forall x \in V, a(bx) = (ab)x</math>.
* <math>\VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>.
* <math>VS_7 : \forall a \in F, \forall x, y \in V, a(x + y) = ax + ay</math>.
* <math>\VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>.
* <math>VS_8 : \forall a, b \in F, \forall x \in V, (a + b)x = ax + bx</math>.

Revision as of 22:03, 24 September 2014

Polar coordinates:

The Fundamantal Theorem of Algebra: where has a soluion In particular, has a solution.


  • Forces can multiple by a "scalar"(number).

No "multiplication" of forces.


Definition of Vector Space: A "Vector Space" over a field F is a set V with a special element and two binary operations:

s.t.

  • .
  • .
  • .
  • .
  • .
  • .
  • .
  • .