14-240/Classnotes for Monday September 15: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
(Fix some typesetting.)
Line 1: Line 1:
Definition:
Definition:
Subtract: if <math>a , b </math> belong to <math>F , a - b = a + (-b)</math>.
Subtraction: if <math>a, b \in F, a - b = a + (-b)</math>.
Divition: if <math>a , b </math> belong to <math>F , a / b = a * (b </math>to the power <math>(-1)</math>.
Division: if <math>a, b \in F, a / b = a * b^{-1}</math>.


Theorem:
Theorem:
Line 26: Line 26:
by cancellation (P2) , <math>b = 0</math>.
by cancellation (P2) , <math>b = 0</math>.
<math>(a + b) * (a - b) = a square - b square</math>.
<math>(a + b) * (a - b) = a^2 - b^2</math>.
proof: By F5 , <math>(a + b) * (a - b) = a * (a + (-b)) + b * (a + (-b))
proof: By F5 , <math>(a + b) * (a - b) = a * (a + (-b)) + b * (a + (-b))
= a * a + a * (-b) + b * a + (-b) * b
= a * a + a * (-b) + b * a + (-b) * b
= a square - b square</math>
= a^2 - b^2</math>
Theorem :
Theorem :
There exists !(unique) <math>iota : Z ---> F</math> s.t.
There exists !(unique) iota <math>\iota : \Z \rightarrow F</math> s.t.
1. <math>iota(0) = 0 , iota(1) = 1</math>;
1. <math>\iota(0) = 0 , \iota(1) = 1</math>;
2. For every <math>m ,n</math> belong to <math>Z</math> , <math>iota(m+n) = iota(m) + iota(n)</math>;
2. For every <math>m ,n</math> belong to <math>Z</math> , <math>\iota(m+n) = \iota(m) + \iota(n)</math>;
3. >For every <math>m ,n</math> belong to <math>Z</math> , <math>iota(m*n) = iota(m) * iota(n)</math>.
3. For every <math>m ,n</math> belong to <math>Z</math> , <math>\iota(m*n) = \iota(m) * \iota(n)</math>.


iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;

Revision as of 08:42, 16 September 2014

Definition:

           Subtraction: if .
           Division: if .

Theorem:

        8. For every  belongs to F , .
                   proof of 8: By F3 , ;
                               By F5 , ;
                               By F3 , ;
                               By Thm P1 ,.
       
        9. There not exists  belongs to F s.t. ;
           For every  belongs to F s.t. is not equal to .
                   proof of 9: By F3 , is not equal to .
       
       10. .
     
       11. .
      
       12. .
                   proof of 12: <= : By P8 , if  , then ;
                                     By P8 , if  , then .
                                => : Assume  , if a = 0 we have done;
                                     Otherwise , by P8 ,  is not equal to and we have ;  
                                                 by cancellation (P2) , .
       

.

        proof: By F5 , 

Theorem :

        There exists !(unique) iota   s.t.
              1. ;
              2. For every  belong to  , ;
              3. For every  belong to  , .
        iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
        iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1; 
        ......                                                                          
     
        In F2 ,