14-240/Classnotes for Monday September 15: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| Line 11: | Line 11: | ||
By Thm P1 ,<math>0 = a * 0</math>. |
By Thm P1 ,<math>0 = a * 0</math>. |
||
9. There not exists <math>b belongs to F s.t. 0 * b = 1</math>; |
9. There not exists <math>b</math> belongs to F s.t. <math>0 * b = 1</math>; |
||
For every <math>b belongs to F s.t. 0 * b </math>is not equal to <math>1</math>. |
For every <math>b</math> belongs to F s.t. <math>0 * b </math>is not equal to <math>1</math>. |
||
proof of 9: By F3 , <math>0 * b = 0 </math>is not equal to <math>1</math>. |
proof of 9: By F3 , <math>0 * b = 0 </math>is not equal to <math>1</math>. |
||
Revision as of 10:58, 15 September 2014
Definition:
Subtract: if [math]\displaystyle{ a , b }[/math]belong to [math]\displaystyle{ F , a - b = a + (-b) }[/math]. Divition: if [math]\displaystyle{ a , b }[/math]belong to F , [math]\displaystyle{ a / b = a * (b to the power (-1) }[/math].
Theorem:
8. For every [math]\displaystyle{ a belongs to F , a * 0 = 0 }[/math]. proof of 8: By F3 , [math]\displaystyle{ a * 0 = a * (0 + 0) }[/math]; By F5 , [math]\displaystyle{ a * (0 + 0) = a * 0 + a * 0 }[/math]; By F3 , [math]\displaystyle{ a * 0 = 0 + a * 0 }[/math]; By Thm P1 ,[math]\displaystyle{ 0 = a * 0 }[/math]. 9. There not exists [math]\displaystyle{ b }[/math] belongs to F s.t. [math]\displaystyle{ 0 * b = 1 }[/math]; For every [math]\displaystyle{ b }[/math] belongs to F s.t. [math]\displaystyle{ 0 * b }[/math]is not equal to [math]\displaystyle{ 1 }[/math]. proof of 9: By F3 , [math]\displaystyle{ 0 * b = 0 }[/math]is not equal to [math]\displaystyle{ 1 }[/math]. 10. [math]\displaystyle{ (-a) * b = a * (-b) = -(a * b) }[/math]. 11. [math]\displaystyle{ (-a) * (-b) = a * b }[/math]. 12. [math]\displaystyle{ a * b = 0 iff a = 0 or b = 0 }[/math]. proof of 12: <= : By P8 , [math]\displaystyle{ if a = 0 , then a * b = 0 * b = 0 }[/math]; By P8 , [math]\displaystyle{ if b = 0 , then a * b = a * 0 = 0 }[/math]. => : Assume [math]\displaystyle{ a * b = 0 }[/math] , if a = 0 we have done; Otherwise , by P8 , [math]\displaystyle{ a }[/math]is not equal to [math]\displaystyle{ 0 }[/math]and we have [math]\displaystyle{ a * b = 0 = a * 0 }[/math]; by cancellation (P2) , [math]\displaystyle{ b = 0 }[/math].
[math]\displaystyle{ (a + b) * (a - b) = a square - b square }[/math].
proof: By F5 , [math]\displaystyle{ (a + b) * (a - b) = a * (a + (-b)) + b * (a + (-b))
= a * a + a * (-b) + b * a + (-b) * b
= a square - b square }[/math]
Theorem :
There exists !(unique) [math]\displaystyle{ iota : Z ---\gt F }[/math] s.t. 1. [math]\displaystyle{ iota(0) = 0 , iota(1) = 1 }[/math]; 2. For every [math]\displaystyle{ m ,n }[/math] belong to Z , [math]\displaystyle{ iota(m+n) = iota(m) + iota(n) }[/math]; 3. >For every [math]\displaystyle{ m ,n }[/math] belong to Z , [math]\displaystyle{ iota(m*n) = iota(m) * iota(n) }[/math].
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1;
......
In F2 , [math]\displaystyle{ 27 ----\gt iota(27) = iota(26 + 1)
= iota(26) + iota(1)
= iota(26) + 1
= iota(13 * 2) + 1
= iota(2) * iota(13) + 1
= (1 + 1) * iota(13) + 1
= 0 * iota(13) + 1
= 1 }[/math]