14-240/Classnotes for Monday September 15: Difference between revisions
From Drorbn
Jump to navigationJump to search
(Created page with "Definition: Subtract: if <math>a , b belong to F , a - b = a + (-b)</math>. Divition: if <math>a , b belong to F , a / b = a * (b to the power (-1)</ma...") |
No edit summary |
||
Line 1: | Line 1: | ||
Definition: |
Definition: |
||
Subtract: if <math>a , b belong to F , a - b = a + (-b)</math>. |
Subtract: if <math>a , b </math>belong to <math>F , a - b = a + (-b)</math>. |
||
Divition: if <math>a , b belong to F , a / b = a * (b to the power (-1)</math>. |
Divition: if <math>a , b </math>belong to F , <math>a / b = a * (b to the power (-1)</math>. |
||
Theorem: |
Theorem: |
||
Line 12: | Line 12: | ||
9. There not exists <math>b belongs to F s.t. 0 * b = 1</math>; |
9. There not exists <math>b belongs to F s.t. 0 * b = 1</math>; |
||
For every <math>b belongs to F s.t. 0 * b is not equal to 1</math>. |
For every <math>b belongs to F s.t. 0 * b </math>is not equal to <math>1</math>. |
||
proof of 9: By F3 , <math>0 * b = 0 is not equal to 1</math>. |
proof of 9: By F3 , <math>0 * b = 0 </math>is not equal to <math>1</math>. |
||
10. <math>(-a) * b = a * (-b) = -(a * b)</math>. |
10. <math>(-a) * b = a * (-b) = -(a * b)</math>. |
||
Line 23: | Line 23: | ||
By P8 , <math>if b = 0 , then a * b = a * 0 = 0</math>. |
By P8 , <math>if b = 0 , then a * b = a * 0 = 0</math>. |
||
=> : Assume <math>a * b = 0</math> , if a = 0 we have done; |
=> : Assume <math>a * b = 0</math> , if a = 0 we have done; |
||
Otherwise , by P8 , <math>a is not equal to 0 and we have a * b = 0 = a * 0</math>; |
Otherwise , by P8 , <math>a </math>is not equal to <math>0 </math>and we have <math>a * b = 0 = a * 0</math>; |
||
by cancellation (P2) , <math>b = 0</math>. |
by cancellation (P2) , <math>b = 0</math>. |
||
Line 33: | Line 33: | ||
There exists !(unique) <math>iota : Z ---> F</math> s.t. |
There exists !(unique) <math>iota : Z ---> F</math> s.t. |
||
1. <math>iota(0) = 0 , iota(1) = 1</math>; |
1. <math>iota(0) = 0 , iota(1) = 1</math>; |
||
2. |
2. For every <math>m ,n</math> belong to Z , <math>iota(m+n) = iota(m) + iota(n)</math>; |
||
3. |
3. >For every <math>m ,n</math> belong to Z , <math>iota(m*n) = iota(m) * iota(n)</math>. |
||
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1; |
Revision as of 10:57, 15 September 2014
Definition:
Subtract: if belong to . Divition: if belong to F , .
Theorem:
8. For every . proof of 8: By F3 , ; By F5 , ; By F3 , ; By Thm P1 ,. 9. There not exists ; For every is not equal to . proof of 9: By F3 , is not equal to . 10. . 11. . 12. . proof of 12: <= : By P8 , ; By P8 , . => : Assume , if a = 0 we have done; Otherwise , by P8 , is not equal to and we have ; by cancellation (P2) , .
.
proof: By F5 ,
Theorem :
There exists !(unique) s.t. 1. ; 2. For every belong to Z , ; 3. >For every belong to Z , .
iota(2) = iota(1+1) = iota(1) + iota(1) = 1 + 1;
iota(3) = iota(2+1) = iota(2) + iota(1) = iota(2) + 1;
......
In F2 ,