User:Twine: Difference between revisions
From Drorbn
Jump to navigationJump to search
(Notes from Oct 19, temporary placement) |
(Corrected latex errors) |
||
Line 3: | Line 3: | ||
Constant Coefficient Homogeneous High Order ODEs |
Constant Coefficient Homogeneous High Order ODEs |
||
Ex <math> |
Ex <math>Ly = a y'' + b y' + c y = 0</math>, <math>a \in \mathbb{R}, b \in \mathbb{R}, c \in \mathbb{R}</math> |
||
Or generally <math> |
Or generally <math>Ly = \sum_k=0^n a_k y^{(k)} = 0, a_k \in \mathbb{R}</math> |
||
<math>L:{ |
<math>L:\{f: \mathbb{R} \rightarrow \mathbb{R}\} \rightarrow \{f: \mathbb{R} \rightarrow \mathbb{R}\}</math> is a linear transformation ("linear operator"). |
||
What do we expect from <math>{y: |
What do we expect from <math>\{y: Ly = 0\} = ker(L)</math>? We expect an n-dimensional vector space. |
||
Take <math> y |
Take <math> y''+y'-6y = 0</math>, guess <math> y = c, y' = \alpha e^{\alpha x}, y'' = \alpha^2e^{\alpha x}</math> |
||
<math> \alpha^2 e^{\alpha x} + \alpha e^{\alpha x} - 6 e^{\alpha x} = 0</math> |
<math> \alpha^2 e^{\alpha x} + \alpha e^{\alpha x} - 6 e^{\alpha x} = 0</math> |
Latest revision as of 14:33, 24 October 2012
Week 6, Lecture 3
Constant Coefficient Homogeneous High Order ODEs
Ex ,
Or generally
is a linear transformation ("linear operator").
What do we expect from ? We expect an n-dimensional vector space.
Take , guess
So we have as the general solution.
Say we have complex . Then what?