25-1301-{ |
hide text
|
250122-064610: | Hours 8-9: Homotopy equivalences, van Kampen (8). |
250122-064609: | Hours 8-9: Homotopy equivalences, van Kampen (7). |
250122-064608: | Hours 8-9: Homotopy equivalences, van Kampen (6). |
250122-064607: | Hours 8-9: Homotopy equivalences, van Kampen (5). |
250122-064606: | Hours 8-9: Homotopy equivalences, van Kampen (4). |
250122-064605: | Hours 8-9: Homotopy equivalences, van Kampen (3). |
250122-064604: | Hours 8-9: Homotopy equivalences, van Kampen (2). |
250122-064603: | Hours 8-9: Homotopy equivalences, van Kampen. |
250121-162901: | Mon 250120 H7: Borsuk-Ulam (6). |
250121-162900: | Mon 250120 H7: Borsuk-Ulam (5). |
250121-162859: | Mon 250120 H7: Borsuk-Ulam (4). |
250121-162858: | Mon 250120 H7: Borsuk-Ulam (3). |
250121-162857: | Mon 250120 H7: Borsuk-Ulam (2). |
250121-162856: | Mon 250120 H7: Borsuk-Ulam. |
250115-112346: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (10). |
250115-112345: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (9). |
250115-112344: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (8). |
250115-112343: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (7). |
250115-112342: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (6). |
250115-112341: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (5). |
250115-112340: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (4). |
250115-112339: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (3). |
250115-112338: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (2). |
250115-112337: | Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem. |
250114-075239: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (7). |
250114-075238: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (6). |
250114-075237: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (5). |
250114-075236: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (4). |
250114-075235: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (3). |
250114-075234: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (2). |
250114-075233: | Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra. |
250107-162817: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (14). |
250107-162816: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (13). |
250107-162815: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (12). |
250107-162814: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (11). |
250107-162813: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (10). |
250107-162812: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (9). |
250107-162811: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (8). |
250107-162810: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (7). |
250107-162809: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (6). |
250107-162808: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (5). |
250107-162807: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (4). |
250107-162806: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (3). |
250107-162805: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (2). |
250107-162804: | Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$. |
250106-142329: | Mon 250106 H1: The definition of $\pi_1$ (7). |
250106-142328: | Mon 250106 H1: The definition of $\pi_1$ (6). |
250106-142327: | Mon 250106 H1: The definition of $\pi_1$ (5). |
250106-142326: | Mon 250106 H1: The definition of $\pi_1$ (4). |
250106-142325: | Mon 250106 H1: The definition of $\pi_1$ (3). |
250106-142324: | Mon 250106 H1: The definition of $\pi_1$ (2). |
250106-142323: | Mon 250106 H1: The definition of $\pi_1$. |
} |