Blackboard Shots with Prefix "25-1301"
250318-185347: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (15).
250318-185346: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (14).
250318-185345: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (13).
250318-185344: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (12).
250318-185343: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (11).
250318-185342: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (10).
250318-185341: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (9).
250318-185340: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (8).
250318-185339: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (7).
250318-185338: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (6).
250318-185337: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (5).
250318-185336: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (4).
250318-185335: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (3).
250318-185334: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam (2).
250318-185333: Hours 29-30: The ${\mathbb R}^n/S^n$ theorems, invariance of domain, and Borsuk-Ulam.
250318-112344: Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (6).
250318-112343: Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (5).
250318-112342: Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (4).
250318-112341: Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (3).
250318-112340: Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems (2).
250318-112339: Hour 28: Mayer-Vietoris and some ${\mathbb R}^n/S^n$ theorems.
250314-155310: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (10).
250314-155309: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (9).
250314-155308: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (8).
250314-155307: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (7).
250314-155306: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (6).
250314-155305: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (5).
250314-155304: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (4).
250314-155303: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (3).
250314-155302: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology (2).
250314-155301: Hours 26-27: barycentric details, reduced homology, quotients vs. relative homology.
250305-172545: Hours 23-24: short and long exact sequences, excision (12).
250305-172544: Hours 23-24: short and long exact sequences, excision (11).
250305-172543: Hours 23-24: short and long exact sequences, excision (10).
250305-172542: Hours 23-24: short and long exact sequences, excision (9).
250305-172541: Hours 23-24: short and long exact sequences, excision (8).
250305-172540: Hours 23-24: short and long exact sequences, excision (7).
250305-172539: Hours 23-24: short and long exact sequences, excision (6).
250305-172538: Hours 23-24: short and long exact sequences, excision (5).
250305-172537: Hours 23-24: short and long exact sequences, excision (4).
250305-172536: Hours 23-24: short and long exact sequences, excision (3).
250305-172535: Hours 23-24: short and long exact sequences, excision (2).
250305-172534: Hours 23-24: short and long exact sequences, excision.
250303-143312: Hours 20-21: Functoriallity, invariance under homotopy (7).
250303-143311: Hours 20-21: Functoriallity, invariance under homotopy (6).
250303-143310: Hours 20-21: Functoriallity, invariance under homotopy (5).
250303-143309: Hours 20-21: Functoriallity, invariance under homotopy (4).
250303-143308: Hours 20-21: Functoriallity, invariance under homotopy (3).
250303-143307: Hours 20-21: Functoriallity, invariance under homotopy (2).
250303-143306: Hours 20-21: Functoriallity, invariance under homotopy.
250213-084759: Hours 17-18: Proof of the fundamental theorems on covering spaces (5).
250213-084758: Hours 17-18: Proof of the fundamental theorems on covering spaces (4).
250213-084757: Hours 17-18: Proof of the fundamental theorems on covering spaces (3).
250213-084756: Hours 17-18: Proof of the fundamental theorems on covering spaces (2).
250213-084755: Hours 17-18: Proof of the fundamental theorems on covering spaces.
250213-084628: Hour 16: Proof of the fundamental theorems on covering spaces (4).
250213-084627: Hour 16: Proof of the fundamental theorems on covering spaces (3).
250213-084626: Hour 16: Proof of the fundamental theorems on covering spaces (2).
250213-084625: Hour 16: Proof of the fundamental theorems on covering spaces.
250206-073359: Hours 14-15: The fundamental theorems on covering spaces (10).
250206-073358: Hours 14-15: The fundamental theorems on covering spaces (9).
250206-073357: Hours 14-15: The fundamental theorems on covering spaces (8).
250206-073356: Hours 14-15: The fundamental theorems on covering spaces (7).
250206-073355: Hours 14-15: The fundamental theorems on covering spaces (6).
250206-073354: Hours 14-15: The fundamental theorems on covering spaces (5).
250206-073353: Hours 14-15: The fundamental theorems on covering spaces (4).
250206-073352: Hours 14-15: The fundamental theorems on covering spaces (3).
250206-073351: Hours 14-15: The fundamental theorems on covering spaces (2).
250206-073350: Hours 14-15: The fundamental theorems on covering spaces.
250130-154049: Hours 11-12: More van Kampen examples; proof of van Kampen (11).
250130-154048: Hours 11-12: More van Kampen examples; proof of van Kampen (10).
250130-154047: Hours 11-12: More van Kampen examples; proof of van Kampen (9).
250130-154046: Hours 11-12: More van Kampen examples; proof of van Kampen (8).
250130-154045: Hours 11-12: More van Kampen examples; proof of van Kampen (7).
250130-154044: Hours 11-12: More van Kampen examples; proof of van Kampen (6).
250130-154043: Hours 11-12: More van Kampen examples; proof of van Kampen (5).
250130-154042: Hours 11-12: More van Kampen examples; proof of van Kampen (4).
250130-154041: Hours 11-12: More van Kampen examples; proof of van Kampen (3).
250130-154040: Hours 11-12: More van Kampen examples; proof of van Kampen (2).
250130-154039: Hours 11-12: More van Kampen examples; proof of van Kampen.
250115-112346: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (10).
250115-112345: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (9).
250115-112344: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (8).
250115-112343: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (7).
250115-112342: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (6).
250115-112341: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (5).
250115-112340: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (4).
250115-112339: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (3).
250115-112338: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (2).
250115-112337: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem.
250114-075239: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (7).
250114-075238: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (6).
250114-075237: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (5).
250114-075236: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (4).
250114-075235: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (3).
250114-075234: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (2).
250114-075233: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra.
250107-162817: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (14).
250107-162816: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (13).
250107-162815: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (12).
250107-162814: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (11).
250107-162813: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (10).
250107-162812: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (9).
250107-162811: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (8).
250107-162810: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (7).
250107-162809: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (6).
250107-162808: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (5).
250107-162807: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (4).
250107-162806: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (3).
250107-162805: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (2).