09-240/Classnotes for Tuesday October 20: Difference between revisions

From Drorbn
Jump to navigationJump to search
(Format.)
(Format first half.)
Line 1: Line 1:
'''Definition''': '''V''' and '''W''' are "isomorphic" if there exist linear transformations <math>\mathrm{T : V \rightarrow W}</math> and <math>\mathrm{S : W \rightarrow V}</math> such that <math>\mathrm{T \circ S} = I_\mathrm{W}</math> and <math>\mathrm{S \circ T} = I_\mathrm{V}</math>
== Definition ==
V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=I<sub>W</sub> and S∘T=I<sub>V</sub>


'''Theorem''': If '''V''' and '''W''' are finite-dimensional over ''F'', then '''V''' is isomorphic to '''W''' iff dim('''V''') = dim('''W''')


'''Corollary''': If dim('''V''') = ''n'' then <math>\mathrm{V} \cong F^n</math>
== Theorem ==
:Note: <math>\cong</math> represents "is isomorphic to"
If V& W are field dimensions over F, then V is isomorphic to W iff dim V=dim W


----


Two "mathematical structures" are "isomorphic" if there exists a "bijection" between their elements which preserves all relevant relations between such elements.
== Corollary ==
If dim V = n then <math> \mathrm{V} \cong \mathrm{F^n} </math>
:Note: <math> \cong </math> represents isomorphism


'''Example''': Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.
Two "mathematical structures" are "isomorphic" if there's a "bijection" between their elements which preserves all relevant relations between such elements.


'''Example''': The game of 15. Players alternate drawing one card each.
Example:
Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.


Ex:
The game of 15. Players alternate drawing one card each.
Goal: To have exactly three of your cards add to 15.
Goal: To have exactly three of your cards add to 15.


Sample game:
O: 7, ''4, 6, 5'' Wins!
* X picks 3
X: 3, 8, 1, 2
* O picks 7
* X picks 8
* O picks ''4''
* X picks 1
* O picks ''6''
* X picks 2
* O picks ''5''
* 4 + 6 + 5 = 15. O wins.


This game is isomorphic to Tic Tac Toe!
This game is isomorphic to Tic Tac Toe!
Line 39: Line 43:
| style="border-style: solid none none solid" | 6
| style="border-style: solid none none solid" | 6
|}
|}

: O: 7, ''4'', ''6'', ''5'' -- Wins!
: X: 3, 8, 1, 2


Converts to:
Converts to:
Line 57: Line 64:
|}
|}


: <math>\mathrm{S \circ T} = I_\mathrm{V}</math>
: S∘T=I<sub>V</sub>
: <math>\mathrm{T \circ S} = I_\mathrm{W}</math>
: T∘S=I<sub>W</sub>
: <math>\mathrm T(O_\mathrm{V}) = O_\mathrm{W}</math>
: T(O<sub>V</sub>)=O<sub>W</sub>


: T(x+y)=T(x)+T(y)
: <math>\mathrm T(x + y) = T(x) + T(y)</math>
: <math>\mathrm T(cv) = c\mathrm T(v)</math>
: T(cV)=cT(V)
: Likewise for <math> \mathrm{S} </math>
: Likewise for <math>\mathrm S</math>


: z=x+y T(z)=T(x)+T(y)
: <math>z = x + y \Rightarrow \mathrm T(z) = \mathrm T(x) + \mathrm T(y)</math>
: u=7v T(u)=7T(v)
: <math>u = 7v \Rightarrow \mathrm T(u) = 7\mathrm T(v)


Proof of Theorem <math> \Leftrightarrow </math> Assume dim V= dim W=n
Proof of Theorem <math>\iff</math> Assume dim('''V''') = dim('''W''') = ''n''
: There exists basis <math>\beta = \{u_1, \ldots, u_n\} \in \mathrm V</math>
: ∃ basis β= (U<sub>1</sub>...U<sub>n</sub>) of V
: <math>\alpha = \{w_1, ..., w_n\} \in \mathrm W</math>
: α=(W<sub>1</sub>...W<sub>n</sub>) of W
: by an earlier theorem, a l.t. T:V→W such that T(U<sub>i</sub>)=W<sub>i</sub>
: by an earlier theorem, there exists a l.t. <math>\mathrm{T : V \rightarrow W}</math> such that <math>\mathrm T(u_i) = w_i</math>


<math>\mathrm T(\sum a_i u_i) = \sum a_i \mathrm T(u_i) = \sum a_i w_i</math>
(T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>u<sub>i</sub>)


There exists a l.t. <math>\mathrm{S : W \rightarrow V}</math> such that <math>\mathrm S(w_i) = u_i</math>
∃ a l.t. S:W→V s.t. S(W<sub>i</sub>)=U<sub>i</sub>




== Claim ==
== Claim ==
: <math>\mathrm{S \circ T} = I_\mathrm{V}</math>
: S∘T=I<sub>v</sub>
: <math>\mathrm{T \circ S} = I_\mathrm{W}</math>
: T∘S=I<sub>w</sub>





Revision as of 03:20, 7 December 2009

Definition: V and W are "isomorphic" if there exist linear transformations and such that and

Theorem: If V and W are finite-dimensional over F, then V is isomorphic to W iff dim(V) = dim(W)

Corollary: If dim(V) = n then

Note: represents "is isomorphic to"

Two "mathematical structures" are "isomorphic" if there exists a "bijection" between their elements which preserves all relevant relations between such elements.

Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.

Example: The game of 15. Players alternate drawing one card each.

Goal: To have exactly three of your cards add to 15.

Sample game:

  • X picks 3
  • O picks 7
  • X picks 8
  • O picks 4
  • X picks 1
  • O picks 6
  • X picks 2
  • O picks 5
  • 4 + 6 + 5 = 15. O wins.

This game is isomorphic to Tic Tac Toe!

4 9 2
3 5 7
8 1 6
O: 7, 4, 6, 5 -- Wins!
X: 3, 8, 1, 2

Converts to:

O 9 X
X O O
X X O
Likewise for
Assume dim(V) = dim(W) = n
There exists basis
by an earlier theorem, there exists a l.t. such that

There exists a l.t. such that


Claim


Proof

If u∈ unto U=∑aiui

(S∘T)(u)=S(T(u))=S(T(∑aiui))
=S(∑aiwi)=∑aiui=u
⇒S∘T=Iv...
⇒Assume T&S as above exist
Choose a basis β= (U1...Un) of V

Claim

α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)

is a basis of W, so dim W=n

Proof

α is lin. indep.

T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
Apply S to both sides:
0=∑aiui
So ∃iai=0 as β is a basis

α Spans W

Given any w∈W let u=S(W)
As β is a basis find ais in F s.t. v=∑aiui

Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi

∴ I win!!! (QED)


T T
V → W ⇔ V' → W'
rank T=rank T'

Fix t:V→Wa l.t.

Definition

  1. N(T) = ker(T) = {u∈V : Tu = 0W}
  2. R(T) = im(T) = {T(u) : u∈V}

Prop/Def

  1. N(T) ⊂ V is a subspace of V-------nullity(T) := dim N(T)
  2. R(T) ⊂ W is a subspace of W--------rank(T) := dim R(T)


Proof 1

x,y ∈N(T)⇒T(x)=0, T(y)=0
T(x+y)=T9x)+T(y)=0+0=0
x+y∈N(T)
∴ I win!!! (QED)


Proof 2

Let y∈R(T)⇒fix x s.t y=T(x),
--------7y=7T(x)=T(7x)
----------⇒7y∈R(T)
∴ I win!!! (QED)


Examples

1.

0:V→W---------N(0)=V
R(0)={0W}-----------nullity(0)=dim V
--------------rank(0)=0
dim V+0=dimV

2.

IV:V→V
N(I)={0}
nullity=0
R(I)=dim V
2'If T:V→W is an imorphism
N(T)={0}
nullity =0
R(T)=W
rank=dim W
0+dim V=dim V

3.

D:P7(R)→P7(R)
Df=f'
N(D)={C⊃C°: C∈R}=P0(R)
R(D)⊂P6(R)
nullity(D)=1
basis:(1x°)
rank(D)=7
7+1=8

4.

3':D2:P7(R)
D2f=f
W(D2)={ax+b: a,b∈R}=P1(R)
nullity(D2)=2
R(D2)=P5(R)
rank (D2)=6
6+2=8

Theorem

(rank-nullity Theorem, a.k.a. dimension Theorem)

nullity(T)+rank(T)=dim V
(for a l.t. T:V→W) when V is F.d.

Proof

(To be continued next day)