09-240/Classnotes for Tuesday October 20: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
No edit summary
Line 1: Line 1:
== Def ==
== Definition ==
V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=I<sub>W</sub> and S∘T=I<sub>V</sub>
V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=I<sub>W</sub> and S∘T=I<sub>V</sub>


Line 56: Line 56:
| O
| O
|}
|}

: S∘T=I<sub>V</sub>
: T∘S=I<sub>W</sub>
: T(O<sub>V</sub>)=O<sub>W</sub>

: T(x+y)=T(x)+T(y)
: T(cV)=cT(V)
: Likewise for <math> \mathrm{S} </math>

: z=x+y ⇒ T(z)=T(x)+T(y)
: u=7v ⇒ T(u)=7T(v)

Proof of Theorem <math> \Leftrightarrow </math> Assume dim V= dim W=n
: ∃ basis β= (U<sub>1</sub>...U<sub>n</sub>) of V
: α=(W<sub>1</sub>...W<sub>n</sub>) of W
: by an earlier theorem, ∃ a l.t. T:V→W such that T(U<sub>i</sub>)=W<sub>i</sub>

(T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>u<sub>i</sub>)

∃ a l.t. S:W→V s.t. S(W<sub>i</sub>)=U<sub>i</sub>


== Claim ==
: S∘T=I<sub>v</sub>
: T∘S=I<sub>w</sub>


== Proof ==
If u∈<math> \mathrm{V} </math> unto U=∑a<sub>i</sub>u<sub>i</sub>
: (S∘T)(u)=S(T(u))=S(T(∑a<sub>i</sub>u<sub>i</sub>))
: =S(∑a<sub>i</sub>w<sub>i</sub>)=∑a<sub>i</sub>u<sub>i</sub>=u
: ⇒S∘T=I<sub>v</sub>...
: ⇒Assume T&S as above exist
: Choose a basis β= (U<sub>1</sub>...U<sub>n</sub>) of V

== Claim ==
α=(W<sub>1</sub>=Tu<sub>1</sub>, W<sub>2</sub>=Tu<sub>2</sub>, ..., W<sub>n</sub>=Tu<sub>n</sub>)
: is a basis of W, so dim W=n

== Proof ==
α is lin. indep.
: T(0)=0=∑a<sub>i</sub>w<sub>i</sub>=∑a<sub>i</sub>Tu<sub>i</sub>=T(∑a<sub>i</sub>u<sub>i</sub>)
: Apply S to both sides:
: 0=∑a<sub>i</sub>u<sub>i</sub>
: So ∃<sub>i</sub>a<sub>i</sub>=0 as β is a basis

α Spans W
: Given any w∈W let u=S(W)
: As β is a basis find a<sub>i</sub>s in F s.t. v=∑a<sub>i</sub>u<sub>i</sub>
Apply T to both sides: T(S(W))=T(u)=T(∑a<sub>i</sub>u<sub>i</sub>)=∑a<sub>i</sub>T(u<sub>i</sub>)=∑a<sub>i</sub>W<sub>i</sub> ∴ I win!!! (QED)

Revision as of 19:13, 20 October 2009

Definition

V & W are "isomorphic" if there exists a linear transformation T:V → W & S:W → V such that T∘S=IW and S∘T=IV


Theorem

If V& W are field dimensions over F, then V is isomorphic to W iff dim V=dim W


Corollary

If dim V = n then

Note: represents isomorphism

Two "mathematical structures" are "isomorphic" if there's a "bijection" between their elements which preserves all relevant relations between such elements.

Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.

Ex: The game of 15. Players alternate drawing one card each. Goal: To have exactly three of your cards add to 15.

O: 7, 4, 6, 5 → Wins! X: 3, 8, 1, 2

This game is isomorphic to Tic Tac Toe!

4 9 2
3 5 7
8 1 6

Converts to:

O 9 X
X O O
X X O
S∘T=IV
T∘S=IW
T(OV)=OW
T(x+y)=T(x)+T(y)
T(cV)=cT(V)
Likewise for
z=x+y ⇒ T(z)=T(x)+T(y)
u=7v ⇒ T(u)=7T(v)

Proof of Theorem Assume dim V= dim W=n

∃ basis β= (U1...Un) of V
α=(W1...Wn) of W
by an earlier theorem, ∃ a l.t. T:V→W such that T(Ui)=Wi

(T(∑aiui)=∑aiT(ui)=∑aiui)

∃ a l.t. S:W→V s.t. S(Wi)=Ui


Claim

S∘T=Iv
T∘S=Iw


Proof

If u∈ unto U=∑aiui

(S∘T)(u)=S(T(u))=S(T(∑aiui))
=S(∑aiwi)=∑aiui=u
⇒S∘T=Iv...
⇒Assume T&S as above exist
Choose a basis β= (U1...Un) of V

Claim

α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)

is a basis of W, so dim W=n

Proof

α is lin. indep.

T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
Apply S to both sides:
0=∑aiui
So ∃iai=0 as β is a basis

α Spans W

Given any w∈W let u=S(W)
As β is a basis find ais in F s.t. v=∑aiui

Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi ∴ I win!!! (QED)