10-327/Homework Assignment 7

From Drorbn
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

Reading

Read sections in Munkres' textbook (Topology, 2nd edition). Remember that reading math isn't like reading a novel! If you read a novel and miss a few details most likely you'll still understand the novel. But if you miss a few details in a math text, often you'll miss everything that follows. So reading math takes reading and rereading and rerereading and a lot of thought about what you've read. Also, preread sections , just to get a feel for the future.

Doing

Solve and submit the following problems from Munkres' book:

  • Problem 1 on page 199.
  • Problem 1 on page 205.
  • Problems 1, 4, 5, 8, 9 on pages 212-213.

Remark. The following fact, which we will prove later, may be used without a proof: If is a topological space and are continuous functions, then the sum is convergent and defines a continuous function on .

Due date

This assignment is due at the end of class on Thursday, November 25, 2010.

Dror's notes above / Student's notes below
  • Question: In problem 1 p205, is asks us to show that any closed subspace of a normal space is also normal. Do we really need the condition that the subspace be closed? - Jdw
    • Yes. Drorbn 19:14, 19 November 2010 (EST)

Questions by Kai Xwbdsb 21:26, 19 November 2010 (EST) were moved to Classnotes for Thursday November 18 as they are about that class and not about this assignment. Drorbn 06:03, 20 November 2010 (EST)

  • Question. If we have a finite set of continuous function mapping from any topological space into the reals. Any linear combination of these continuous function is still continuous right? The proof is a little extension of 157 proof. This is used to prove the statement you mentioned above. -KaiXwbdsb 17:14, 20 November 2010 (EST)
    • Any linear combination of functions from (an uncountable set unless X is empty) is continuous. On its own, however, this proves nothing about infinite sums. Bcd 22:32, 21 November 2010 (EST)
  • Question about 9. Is J any indexing set? Possibly uncountable? in the hint: A means any closed set? -Kai Xwbdsb 22:13, 20 November 2010 (EST)
    • Yes, is arbitrary and is closed. Drorbn 06:41, 22 November 2010 (EST)