Additive identity is $0+0\sqrt{3}=0$ and multiplicative identity is $1+0\sqrt{3}=1$. $\forall x=(a+b\sqrt{3})\in F_1$, \exists an additive inverse of the form $(-a-b\sqrt{3})\in F_1$, and

$$\exists \text{ a multiplicative inverse } (a+b\sqrt{3})^{-1} \text{ or } \frac{a-b\sqrt{3}}{a^2-3b^2} = \frac{a}{a^2-3b^2} - \frac{b}{a^2-3b^2}\sqrt{3}$$

$$a,b \in \mathbb{Q} \Rightarrow \frac{a}{b} \neq \pm\sqrt{3} \Rightarrow (\frac{a}{b})^2 \neq 3 \Rightarrow a^2 \neq 3b^2 \Rightarrow a^2-3b^2 \neq 0$$

Hence, F, is a field.

3-2. Is the set
$$F_2=\{a+b\sqrt{3}:a,b\in\mathbb{Z}\}$$
 (with the same addition & multiplication) a field?

It is not true that $\forall x = (a+b\sqrt{3}) \in F_2$, \exists a multiplicative inverse in F_2 . Counter example: take $x = 4 + o\sqrt{3} = 4 \in F_2$, its multiplicative inverse is ${}^{1}\!\!/4$, of the form, $a+b\sqrt{3}$, where $a={}^{1}\!\!/4$ and b=o, but $a={}^{1}\!\!/4 \notin \mathbb{Z}$, i.e., x's inverse $({}^{1}\!\!/_4 + o\sqrt{3}) \notin F_2$. Hence, F_2 is **not** a field.

4. Let $F_4 = \{0, 1, a, b\}$ be a field containing 4 elements. Assume that 1 + 1 = 0. Prove that $b = a^{-1} = a^2 = a + 1$.

Proof: By definition of a field

 \Rightarrow The sum, product, difference, & quotient of any two elements in F_4 is also an element of F_4 and field elements are distinct elements. \Rightarrow

ab =	0	then a=o or b=o	impossible
	a	then b=1 5 a=0	impossible
	Ь	then a=1 or 6 =0	impossible
	1	then	$b=a^{-1}$
a ² =	0	then a=o	impossible
	1	then $a = a^{-1} = b$? $a = 1 \text{ or } a = -1 = 1$	impossible
	a	then a(a-1)=0, a=0,1	impossible
	b	$a^2 = b$	the only choice
a+1 =	0	then a=-1=1 since 1+1=0 or 1=-1	impossible
	1	then a=o V	impossible
	a	then 1=0 V	impossible
	b	a+1=b /	the only choice

Hence, $b = a^{-1} = a^2 = a + 1$.