
Core Algebra: Lecture 1, Solving Rubik’s Cube1

Today’s goal: within your lifetime, understand G = 〈σ1, . . . , σm〉 < Sn:

1. |G| =?

2. σ ∈ G?

3. σ = w(σ1, . . . , σm)

4. random σ?

Definition 1.1. A group is a set with a binary operation “·” and a distinguished element “1”,
“e”, or “I” such that:

1. a · (b · c) = (a · b) · c “associative”

2. e · a = a · e = a

3. ∀ a ∃ b s.t. a · b = b · a = e

Properties

1. e is “unique”

2. Inverses are unique: “a−1”

3. ab = ba⇒ b = c, ba = ca⇒ b = c

4. (ab)−1 = b−1a−1

Examples

1. (Z,+) but NOT (Z,×)

2. (R∗ = R \ {0} ,×)

3. Invertible 5× 5 matrices

4. Sn = symmetric group on {1, . . . , n} = n
Sn = {σ : n→ n, σ is 1-1 and onto}
σ · τ = σ ◦ τ
e.g. 2 3 4 1 · 2 1 4 3 = 3 2 1 4
|Sn| = n!

Remark 1.2. The notation we use for permutations is: σ = 2 1 4 3 means σ(1) = 2, σ(2) =
1, σ(3) = 4, σ(4) = 3.

Definition 1.3. A subset H ⊂ G of a group G is a “subgroup” if it is closed under the
operations and with these operations it is a group.

1Notes from Professor Bar-Natan’s Fall 2010 Algebra I class. All the mistakes are mine, please let me know if
you find any! (ivahal@math.toronto.edu)
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Definition 1.4. For a subset Σ ⊂ G, 〈Σ〉 := the subgroup generated by Σ. It can be defined
in the following equivalent ways:

1. The smallest subgroup of G which contains Σ.

2. The intersection of all subgroups of G which contain Σ.

3. The collection of all elements of the form:{
σ1σ2σ3σ

−1
1 σ4σ

−1
5 σ6σ7 (for example), where each σi ∈ Σ

}
, i.e. words in Σ and Σ−1.

Row Reduction

Recall that after performing row operations on a matrix we can bring it to row echelon form.
It is more convenient to have the pivots in the nonzero rows on the diagonal, which can be
achieved by inserting rows of zeros if necessary.

M =



∗ ∗ · · · ∗ ∗
∗ · · · ∗

· · ·
.
.
.

.

.

.
· · ·

∗ · · · ∗
∗ ∗ · · · ∗ ∗


row operations−−−−−−−−−−−→



1 ∗ ∗ ∗ · · · ∗
0 0 1 ∗ · · · ∗
0 0 0 1 · · · ∗

.

.

.
0 · · · 0

.

.

.

.

.

.
0 · · · 0


diagonal pivots−−−−−−−−−−−→



1 ∗ ∗ ∗ · · · ∗
0 0 · · · 0
0 0 1 ∗ · · · ∗
0 0 0 1 · · · ∗

.

.

.
0 · · · 0

.

.

.

.

.

.
0 · · · 0



Gaussian Elimination

1. Start with a blank matrix T (all zero entries) where, for instance, the second row is
designated to store a vector of the form (0, 1, ∗, . . . , ∗).

2. Feed the rows of M into T in order.

Feed(r) :=


1. Renormalize r so that is has 1 at its pivotal position i.
2. If Ti = (row i of T ) is empty, set Ti = r.

Otherwise, feed (r − Ti). Feed 0 by doing nothing.

On the group theoretic side, we can:

1. Prepare a nearly empty table T :

(1,1)
I

(1,2) (2,2)
I

(1,3) (2,3) (3,3)
I

...
. . .

(1,n) (2,n) (3,n) (n,n)
. . . I

A box labeled by (i, j) in T is designated for σ = (1, 2, 3, . . . , (i− 1), j, ∗, . . . , ∗) where j is
in pivotal position i. Namely, σ(k) = k for k < i and σ(i) = j.
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2. Feed σ1, . . . , σm into T in order.
Feed σ:

A. If σ = I, do nothing.

B. Otherwise, find the pivotal position i of σ (σ(k) = k for k < j, yet j = σ(i) 6= i).

i. If Tij is empty, write σ there and quit.

ii. Otherwise, σ′ = σ−1
ij σ has pivotal position > i so feed σ′:

σ−1
ij σ (k) =

{
k k < i
i k = i

3. Twist: For any σij , σkl ∈ T , feel σijσkl.

Remark 1.5. We have at most n2 elements in T (in fact n2/2) and at most n4 pairs so at most
n4 feeds. A feed takes at most n steps, each one is a permutation multiplication so takes time
n. In total, in the worst case we then need n4 · n · n = n6 steps, which is polynomial time.

Theorem 1.6. Let M1 = {σ1j1σ2j2 . . . σnjn : ∀ i, ji ≥ i and σiji ∈ T}. Then M1 = G.
|G| = Product of sizes of the columns of T .

Claim 1.7. Every σij ∈ T is in G.

Claim 1.8. Any σ fed into T is in M1.

Proof.

Feed σ −→ Feed σ−1
i1j1

σ
i2>i1−−−→ Feed σ−1

i2j2
σ−1

i1j1
σ −→ · · · −→ I or some element σkl

If we get I at the end of the algorithm, then, say,

σ−1
i3j3

σ−1
i2j2

σ−1
i1j1

σ = I ⇒ σ = σi1j1σi2j2σi3j3 is a monotone product.

Otherwise, we get:

σ−1
i3j3

σ−1
i2j2

σ−1
i1j1

σ = σkl ⇒ σ = σi1j1σi2j2σi3j3σkl is again a monotone product.

Claim 1.9. If σ1j1σ2j2σ3j3 . . . σnjn = σ1j′1
σ2j′2

σ3j′3
. . . σnj′n then j1 = j′1, j2 = j′2, . . . , jn = j′n.

Proof. Let:

a = σ1j1σ2j2σ3j3 . . . σnjn

b = σ1j′1
σ2j′2

σ3j′3
. . . σnj′n

Evaluating a(1) = b(1), we get that j1 = j′1 and we can cancel σ1j1 and σ1j′1
.

Evaluating at 2, we get j2 = j′2 and so on.

Definition 1.10. Mk := {σkjk
. . . σnjn : ∀ i ≥ k, ji ≥ i and σiji ∈ T}

Claim 1.11. Mk ·Mk ⊂Mk (so Mk is a subgroup).

Proof. Using backward induction. Mn = {I} so the claim is true for Mn.
Suppose M5 ·M5 ⊂M5. Subclaim: σ8j8M4 ⊂M4.
(Continued next time.)
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