Mat240 assignment 2

1.1--3 (a) Find the equation of the plane containing the following points in space.
$\mathrm{A}(2,-5,-1), \mathrm{B}(0,4,6), \mathrm{C}(-3,7,1)$
Vector from point A to point B is $\mathbf{u}=(0,4,6)-(2,-5,-1)=\langle-2,9,7\rangle$
vector from point A to point C is $\mathbf{v}=(-3,7,1)-(2,-5,-1)=\langle-5,12,2\rangle$
Know one point $\mathrm{A}(2,-5,-1)$ and two vectors $\mathbf{u}=\langle-2,9,7>$ and $\mathbf{v}=\langle-5,12,2\rangle$ in the plane.

$$
\begin{aligned}
x & =(2,-5,-1)+s u+t v \\
& =(2,-5,-1)+s\langle-2,9,7\rangle+t\langle-5,12,2\rangle \quad \text { where } s, t \in \mathbb{R} .
\end{aligned}
$$

1.2--1. True or false.

$$
\begin{array}{ll}
\text { In any vector space, } a x=b x \text { implies that } \mathrm{a}=\mathrm{b} . & \text { (F) not so when } \mathrm{x}=\boldsymbol{o} \\
\text { In any vector space, } a x=a y \text { implies that } \mathrm{x}=\mathrm{y} . & \text { (F) not so when } a=0
\end{array}
$$

18. Let $V=\left\{\left(a_{1}, a_{2}\right): a_{1}, a_{2} \in \mathbb{R}\right\}$. For $\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right) \in V$ and $c \in \mathbb{R}$, define $\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)+\left(\mathrm{b}_{1}, \mathrm{~b}_{2}\right)=\left(\mathrm{a}_{1}+2 \mathrm{~b}_{1}, \mathrm{a}_{2}+3 \mathrm{~b}_{2}\right)$ and $\mathrm{c}\left(\mathrm{a}_{1}, \mathrm{a}_{2}\right)=\left(\mathrm{ca}_{1}, \mathrm{ca}_{2}\right)$.

Is V a vector space over R with these operations?
Solution: V is not a vector space, since "additive associativity $(x+y)+z=x+(y+z)$ " fails.
Counter example: $((2,2)+(1,1))+(1 / 2,1 / 3)=(2+2,2+3)+(1 / 2,1 / 3)=(4,5)+(1 / 2,1 / 3)=(4+1,5+1)=(5,6)$

$$
\text { But }(2,2)+((1,1)+(1 / 2,1 / 3))=(2,2)+(1+1,1+1)=(2,2)+(2+2)=(2+2 \cdot 2,2+2 \cdot 3)=(2+4,2+6)=(6,8)
$$

21. Let V and W be vector spaces over a field F. Let $Z=\{(v, w): v \in V$ and $w \in W\}$.

Prove that Z is a vector space over F with operations $\left.\left.\left(v_{1}, w_{1}\right)+\begin{array}{c}\left(v_{2}, w_{2}\right) \\ c\left(v_{1}, W_{1}\right)\end{array}\right)=\binom{\left(v_{1}+v_{2}, w_{1}\right.}{\left(\mathrm{v}_{1}, c w_{1}\right)} . w_{2}\right)$ and
Proof: Generally, the first component of a vector in Z inherits vector space properties from V , while the second component of a vector in Z inherits vector space properties from W .
${ }^{1}$) since V is a vector space, and W is a vector space,
$\forall\left(v_{1}, u_{1}\right),\left(v_{2}, u_{2}\right) \in V,\left(v_{1}, u_{1}\right)+\left(v_{2}, u_{2}\right)=\left(v_{1}+v_{2}, u_{1}+u_{2}\right)=\left(v_{2}, u_{2}\right)+\left(v_{1}, u_{1}\right)=\left(v_{2}+v_{1}, u_{2}+u_{1}\right)$
\Rightarrow for the first component, $\mathrm{v}_{1}+\mathrm{v}_{2}=\mathrm{v}_{2}+\mathrm{v}_{1}$
$\forall\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{~W}_{2}\right) \in \mathrm{W},\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{w}_{2}\right)=\left(\mathrm{x}_{1}+\mathrm{x}_{2}, \mathrm{w}_{1}+\mathrm{w}_{2}\right)=\left(\mathrm{x}_{2}, \mathrm{w}_{2}\right)+\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right)=\left(\mathrm{x}_{2}+\mathrm{x}_{1}, \mathrm{w}_{2}+\mathrm{w}_{1}\right)$
\Rightarrow for the second component, $\mathrm{w}_{1}+\mathrm{w}_{2}=\mathrm{w}_{2}+\mathrm{w}_{1}$
By definition, $\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right)+\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)=\left(\mathrm{v}_{1}+\mathrm{v}_{2}, \mathrm{w}_{1}+\mathrm{w}_{2}\right)=\left(\mathrm{v}_{2}+\mathrm{v}_{1}, \mathrm{w}_{2}+\mathrm{w}_{1}\right)=\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)+\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right)$
\Rightarrow additive commutativity holds for Z .
2) since V and W are vector spaces, \Rightarrow
$\forall\left(\mathrm{v}_{1}, \mathrm{u}_{1}\right),\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right),\left(\mathrm{v}_{3}, \mathrm{u}_{3}\right) \in \mathrm{V},\left(\left(\mathrm{v}_{1}, \mathrm{u}_{1}\right)+\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right)\right)+\left(\mathrm{v}_{3}, \mathrm{u}_{3}\right)=\left(\mathrm{v}_{1}, \mathrm{u}_{1}\right)+\left(\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right)+\left(\mathrm{v}_{3}, \mathrm{u}_{3}\right)\right)$
\Rightarrow for the first component, $\left(v_{1}+v_{2}\right)+v_{3}=v_{1}+\left(v_{2}+v_{3}\right)$
$\forall\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{w}_{2}\right),\left(\mathrm{x}_{3}, \mathrm{w}_{3}\right) \in \mathrm{W},\left(\left(\mathrm{x}_{1}, \mathrm{~W}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{w}_{2}\right)\right)+\left(\mathrm{x}_{3}, \mathrm{w}_{3}\right)=\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right)+\left(\left(\mathrm{x}_{2}, \mathrm{w}_{2}\right)+\left(\mathrm{x}_{3}, \mathrm{w}_{3}\right)\right)$
\Rightarrow for the second component, $\left(w_{1}+w_{2}\right)+w_{3}=w_{1}+\left(w_{2}+w_{3}\right)$
$\Rightarrow\left(\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)+\mathrm{v}_{3},\left(\mathrm{w}_{1}+\mathrm{w}_{2}\right)+\mathrm{w}_{3}\right)=\left(\mathrm{v}_{1}+\left(\mathrm{v}_{2}+\mathrm{v}_{3}\right), \mathrm{w}_{1}+\left(\mathrm{w}_{2}+\mathrm{w}_{3}\right)\right)$
\Rightarrow By definition, $\left(\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right)+\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)\right)+\left(\mathrm{v}_{3}, \mathrm{w}_{3}\right)=\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right)+\left(\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)+\left(\mathrm{v}_{3}, \mathrm{w}_{3}\right)\right)$
where $\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right),\left(\mathrm{v}_{3}, \mathrm{~W}_{3}\right) \in \mathrm{Z} \Rightarrow$ additive associativity holds for Z .
3) V, W are vector spaces $\Rightarrow \exists$ zero vector $\mathbf{0}_{\vee}$ for V and zero vector $\mathbf{0}_{w}$ for W.
\Rightarrow the zero vector $\mathbf{0}_{z}$ for Z can be formed by
taking the first component of $\mathbf{0}$, and the second component of $\mathbf{0}_{\mathrm{w}}$.
check that $\left(\mathrm{o}_{\mathrm{v}}, \mathrm{o}_{\mathrm{w}}\right)$ is the zero vector in Z . $(\mathrm{v}, \mathrm{w})+\left(\mathrm{o}_{\mathrm{v}}, \mathrm{o}_{\mathrm{w}}\right)=\left(\mathrm{v}+\mathrm{o}_{\mathrm{v}}, \mathrm{w}+\mathrm{o}_{\mathrm{w}}\right)=(\mathrm{v}, \mathrm{w})$
4) since $\forall(v, u) \in V, \exists(-v,-u)$ such that $(v, u)+(-v,-u)=\mathbf{0} \Rightarrow \forall v, \exists-v$ s.t. $v+(-v)=0$
$\forall(\mathrm{x}, \mathrm{w}) \in \mathrm{W}, \exists(-\mathrm{x},-\mathrm{w})$ such that $(\mathrm{x}, \mathrm{w})+(-\mathrm{x},-\mathrm{w})=\mathbf{0} \quad \Rightarrow \quad \forall \mathrm{w}, \exists-\mathrm{w}$ s.t. $\mathrm{w}+(-\mathrm{w})=\mathrm{o}$
$\Rightarrow \forall(\mathrm{v}, \mathrm{w}) \in \mathrm{Z}, \exists(-\mathrm{v},-\mathrm{w})$ such that $(\mathrm{v}, \mathrm{w})+(-\mathrm{v},-\mathrm{w})=\mathbf{0}_{z}$
5) $\forall(\mathrm{v}, \mathrm{u}) \in \mathrm{V}, \mathrm{1}(\mathrm{v}, \mathrm{u})=(\mathrm{v}, \mathrm{u}) \quad \Rightarrow \quad \mathrm{r} \cdot \mathrm{v}=\mathrm{v}$
$\forall(\mathrm{x}, \mathrm{w}) \in \mathrm{W}, \mathrm{l}(\mathrm{x}, \mathrm{w})=(\mathrm{x}, \mathrm{w}) \quad \Rightarrow \quad \mathrm{r} \cdot \mathrm{w}=\mathrm{w}$
\Rightarrow by definition, $1(\mathrm{v}, \mathrm{w})=(1 \cdot \mathrm{v}, 1 \cdot \mathrm{w})$ where $\mathrm{c}=1$, but $(1 \cdot \mathrm{v}, 1 \cdot \mathrm{w})=(\mathrm{v}, \mathrm{w}) \Rightarrow \mathrm{l}(\mathrm{v}, \mathrm{w})=(\mathrm{v}, \mathrm{w})$
6) $\forall \mathrm{a}, \mathrm{b} \in \mathrm{F}, \forall(\mathrm{v}, \mathrm{u}) \in \mathrm{V}, \mathrm{a}(\mathrm{b}(\mathrm{v}, \mathrm{u}))=(\mathrm{ab})(\mathrm{v}, \mathrm{u})$ and $\forall(\mathrm{x}, \mathrm{w}) \in \mathrm{W}, \mathrm{a}(\mathrm{b}(\mathrm{x}, \mathrm{w}))=(\mathrm{ab})(\mathrm{x}, \mathrm{w})$

$\Rightarrow \mathrm{a}(\mathrm{bv})=(\mathrm{ab}) \mathrm{v}$ and	$\mathrm{a}(\mathrm{bw})=(\mathrm{ab}) \mathrm{w}$		
$\Rightarrow \forall(\mathrm{v}, \mathrm{w}) \in \mathrm{Z}, \mathrm{a}(\mathrm{b}(\mathrm{v}, \mathrm{w}))$	$\stackrel{\text { def }}{=} \mathrm{a}(\mathrm{bv}, \mathrm{bw})$		where $\mathrm{c}=b$
	$\stackrel{\text { def }}{=}(\mathrm{a}(\mathrm{bv}), \mathrm{a}(\mathrm{bw}))$	where $\mathrm{c}=a$	
	$=((\mathrm{ab}) \mathrm{v},(\mathrm{ab}) \mathrm{w})$		by $\left(^{*}\right)$
	$\stackrel{\text { def }}{=}(\mathrm{ab})(\mathrm{v}, \mathrm{w})$	where $c=a b$	

7) $\forall c \in F, \forall\left(v_{1}, u_{1}\right),\left(v_{2}, u_{2}\right) \in V, c\left(\left(v_{1}, u_{1}\right)+\left(v_{2}, u_{2}\right)\right)=c\left(v_{1}, u_{1}\right)+c\left(v_{2}, u_{2}\right) \Rightarrow c\left(v_{1}+v_{2}\right)=\mathrm{cv}_{1}+\mathrm{cv}_{2}$
$\forall\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{w}_{2}\right) \in \mathrm{W}, \mathrm{c}\left(\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right)+\left(\mathrm{x}_{2}, \mathrm{w}_{2}\right)\right)=\mathrm{c}\left(\mathrm{x}_{1}, \mathrm{w}_{1}\right)+\mathrm{c}\left(\mathrm{x}_{2}, \mathrm{w}_{2}\right) \Rightarrow \mathrm{c}\left(\mathrm{w}_{1}+\mathrm{w}_{2}\right)=\mathrm{cw}_{1}+\mathrm{cw}_{2}$
$\Rightarrow \forall\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right),\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right) \in \mathrm{Z}$,
$\mathrm{c}\left(\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right)+\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)\right)=\mathrm{c}\left(\mathrm{v}_{1}+\mathrm{v}_{2}\right)+\mathrm{c}\left(\mathrm{w}_{1}+\mathrm{w}_{2}\right)=\left(\mathrm{cv}_{1}+\mathrm{Cv}_{2}, \mathrm{Cw}_{1}+\mathrm{cw}_{2}\right)=\mathrm{c}\left(\mathrm{v}_{1}, \mathrm{w}_{1}\right)+\mathrm{c}\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)$
8) $\forall a, b \in F, \forall(v, u) \in V,(a+b)(v, u)=a(v, u)+b(v, u)=(a v+b v, a u+b u) \Rightarrow(a+b) v=a v+b v$
$\forall(x, w) \in W,(a+b)(x, w)=a(x, w)+b(x, w)=(a x+b x, a w+b w) \Rightarrow(a+b) w=a w+b w$
$\Rightarrow \forall(v, w) \in Z,(a+b)(v, w)=(a v+b v, a w+b w)=a(v, w)+b(v, w)$
1.3--8. Determine whether the sets are subspaces of R^{3} under the operations of addition and scalar multiplication defined on R^{3}.
A. $\mathrm{W}_{1}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right) \in \mathbb{R}^{3}: \quad \mathrm{a}_{1}=3 \mathrm{a}_{2} \quad \& \quad \mathrm{a}_{3}=-\mathrm{a}_{2}\right\}$

Every vector in W_{1} is of the form $\left(a_{1}, a_{2}, a_{3}\right)=\left(3 a_{2}, a_{2},-a_{2}\right)=a_{2}(3,1,-1) \quad$ where a_{2} is a parameter.
Geometrically, W_{1} is a line along the vector ($3,1,-1$). The sum of any two vectors in W_{1} is also on the line; scalar multiplication will only change the length of the line segment.

When $a_{2}=0,\left(a_{1}, a_{2}, a_{3}\right)=(0, o, o) \Rightarrow \mathbf{0}_{R^{3}} \in W_{1}$ or the line is through the origin.
$\Rightarrow \quad W_{1}$ is a subspace of \mathbb{R}^{3}
B. $\mathrm{W}_{2}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right) \in \mathbb{R}^{3}: \quad \mathrm{a}_{1}=\mathrm{a}_{3}+2\right\}$

Every vector in W_{2} is of the form
$\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{3}+2, a_{2}, a_{3}\right)=(2,0,0)+a_{2}(0,1, o)+a_{3}(1,0,1) \quad$ where a_{2}, a_{3} are parameters.
This is a plane spanned by vectors ($0,1,0$) and ($1,0,1$).
When $a_{2}=0=a_{3}, \quad\left(a_{1}, a_{2}, a_{3}\right)=(2,0,0) \Rightarrow \quad \mathbf{0}_{\mathbb{R}^{3}} \notin W_{2} \Rightarrow \quad W_{2}$ is not a subspace of \mathbb{R}^{3}
C. $W_{3}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 2 a_{1}-7 a_{2}+a_{3}=0\right\}$

Every vector in W_{3} is of the form $\left(a_{1}, a_{2}, a_{3}\right)=\left(a_{1}, a_{2},-2 a_{1}+7 a_{2}\right)=a_{1}(1,0,-2)+a_{2}(0,1,7)$
When $\mathrm{a}_{1}=\mathrm{o}=\mathrm{a}_{2},\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)=(\mathrm{o}, \mathrm{o}, \mathrm{o}) \quad \Rightarrow \quad \mathbf{0}_{\mathbb{R}^{3}} \in \mathrm{~W}_{3}$
This is a plane through the origin $\Rightarrow \quad W_{3}$ is a subspace of \mathbb{R}^{3}
D. $\mathrm{W}_{4}=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right) \in \mathbb{R}^{3}: \mathrm{a}_{1}-4 \mathrm{a}_{2}-\mathrm{a}_{3}=\mathrm{o}\right\}$

Every vector in W_{4} is of the form $\left(a_{1}, a_{2}, a_{3}\right)=\left(4 a_{2}+a_{3}, a_{2}, a_{3}\right)=a_{2}(4,1, o)+a_{3}(1, o, 1)$.
When $\mathrm{a}_{2}=\mathrm{o}=\mathrm{a}_{3},\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right)=(\mathrm{o}, \mathrm{o}, \mathrm{o}) \quad \Rightarrow \quad \mathbf{0}_{\mathbb{R}^{3}} \in \mathrm{~W}_{4}$
This is a plane through the origin. $\quad \Rightarrow \quad W_{4}$ is a subspace of \mathbb{R}^{3}
E. $W_{5}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: a_{1}+2 a_{2}-3 a_{3}=1\right\}$
$\forall v \in W_{5}, \quad v=\left(a_{1}, a_{2}, a_{3}\right)=\left(1-2 a_{2}+3 a_{3}, a_{2}, a_{3}\right)=(1,0, o)+a_{2}(-2,1, o)+a_{3}(3,0,1)$ when $\mathrm{a}_{2}=\mathrm{o}=\mathrm{a}_{3}, \mathrm{v}=(1, \mathrm{o}, \mathrm{o}) \quad \mathrm{W}_{5}$ represents a plane not through the origin
$\Rightarrow W_{5}$ is a not subspace of $\mathbb{R}^{3} \quad$ since $\mathbf{0}_{\mathbb{R}^{3}} \notin W_{5}$
F. $W_{6}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}: 5 a_{1}^{2}-3 a_{2}^{2}+6 a_{3}^{2}=o\right\}$
$1^{\circ} \quad$ Notice that when $a_{2}=0,5 a_{1}^{2}+6 a_{3}^{2}=0 \quad \Rightarrow \quad\left(a_{1}, a_{2}, a_{3}\right)=(o, o, o) \quad \Rightarrow \quad \mathbf{0}_{R^{3}} \in W_{6}$ W_{6} is a cone surface in \mathbb{R}^{3}

2°
$\forall c \in F, 5\left(c a_{1}\right)^{2}-3\left(c a_{2}\right)^{2}+6\left(c a_{3}\right)^{2}=c^{2}\left(5 a_{1}^{2}-3 a_{2}^{2}+6 a_{3}^{2}\right)=c^{2}(o)=0$
$\Rightarrow\left(c\left(a_{1}, a_{2}, a_{3}\right)\right) \in W_{6} \quad \Rightarrow \quad W_{6}$ is closed under scalar multiplication.
3° But for any two vectors $(u, v, w) \&(x, y, z) \in W_{6}$ their sum $(u, v, w)+(x, y, z)=(u+x, v+y, w+z)$
But $\left(a_{1}, a_{2}, a_{3}\right)=(u+x, v+y, w+z)$ does not necessarily satisfy the equation $5 a_{1}{ }^{2}-3 a_{2}{ }^{2}+6 a_{3}^{2}=0$

$$
\begin{array}{r}
5(u+x)^{2}-3(v+y)^{2}+6(w+z)^{2}=5\left(u^{2}+x^{2}+2 u x\right)-3\left(v^{2}+y^{2}+2 v y\right)+6\left(w^{2}+z^{2}+2 w z\right) \\
=\left(5 u^{2}-3 v^{2}+6 w^{2}\right)+\left(5 x^{2}-3 y^{2}+6 z^{2}\right)+2(5 u x-3 v y+6 w z)
\end{array}
$$

$=0+0+2(5 u x-3 v y+6 w z)$ where the cross terms are not guaranteed to get cancelled. $\Rightarrow \mathrm{W}_{6}$ is not closed under addition. Hence, W_{6} is not a subspace.
19. Let W_{1} and W_{2} be subspaces of a vector space V.

Prove that $W_{1} \cup W_{2}$ is a subspace of $V \Leftrightarrow W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$
First prove \Leftarrow :
Suppose $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$, if $W_{1} \subseteq W_{2}$, then $W_{1} \cup W_{2}=W_{2}$, which is a subspace of V.
if $W_{2} \subseteq W_{1}$, then $W_{1} \cup W_{2}=W_{1}$, which is also a subspace of V.
In either case, $\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is a subspace of V .

Now prove \Rightarrow indirectly by a contradiction:
Assume $W_{1} \cup W_{2}$ is a subspace of V , but $\mathrm{W}_{1} \nsubseteq \mathrm{~W}_{2}$ and $\mathrm{W}_{2} \nsubseteq \mathrm{~W}_{1}$, now look for a contradiction.
$W_{1} \nsubseteq W_{2} \quad \Rightarrow \exists$ a vector $u \notin W_{2}$ but $u \in W_{1} \quad \Rightarrow \quad u \in W_{1} \cup W_{2}$
$\mathrm{W}_{2} \nsubseteq \mathrm{~W}_{1} \quad \Rightarrow \exists \mathrm{a}^{2}$ vector $^{\left({ }^{(*)}\right.} \mathrm{v} \notin \mathrm{W}_{1}$ but $\mathrm{v} \in \mathrm{W}_{2} \quad \Rightarrow \quad \mathrm{v} \in \mathrm{W}_{1} \cup W_{2}$
$\mathrm{W}_{1} \cup W_{2}$ is a subspace of $\mathrm{V} \Rightarrow(\mathrm{u}+\mathrm{v}) \in \mathrm{W}_{1} \cup \mathrm{~W}_{2} \quad$ By property of additive closure of a subspace.
$\Rightarrow(\mathrm{u}+\mathrm{v}) \in \mathrm{W}_{1}$ or $(\mathrm{u}+\mathrm{v}) \in \mathrm{W}_{2}$.
Assume that $(u+v) \in W_{1 .}$ But $u \in W_{1} \Rightarrow$ its inverse $(-u) \in W_{1}$
W_{1} is a subspace of $\mathrm{V} \Rightarrow(-\mathrm{u})+(\mathrm{u}+\mathrm{v}) \in \mathrm{W}_{1} \quad$ by additive closure of a subspace
But $(-\mathrm{u})+(\mathrm{u}+\mathrm{v})=((-\mathrm{u})+\mathrm{u})+\mathrm{v} \quad$ by additive associativity of a vector space
$=\mathrm{o}+\mathrm{v}=\mathrm{v} \in \mathrm{W}_{1} \quad \Rightarrow \quad$ a contradiction with assumption (*)
\Rightarrow Assumption $\mathrm{W}_{2} \nsubseteq \mathrm{~W}_{1}$ must be wrong,
i.e. $\mathrm{W}_{2} \subseteq \mathrm{~W}_{1}$ holds
\Rightarrow so does $\mathrm{W}_{1} \subseteq \mathrm{~W}_{2}$ or $\mathrm{W}_{2} \subseteq \mathrm{~W}_{1}$

