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      Mat240 assignment 2   

   

1.1--3 (a) Find the equation of the plane containing the following points in space.   
 A(2, -5,-1), B(0,4,6), C(-3,7,1) 

Vector from point A to point B is u = (0,4,6)-(2, -5,-1) = <-2, 9, 7> 

vector from point A to point C is v = (-3,7,1)-(2, -5,-1) = <-5, 12, 2> 

Know one point A(2, -5,-1) and two vectors u= <-2, 9, 7> and v= <-5, 12, 2> in the plane. 

x=  (2, -5,-1)+ su+t v 

  = (2, -5,-1) + s <-2, 9, 7> + t <-5, 12, 2>     where s, t ∈ℝ. 

 

 

1.2--1. True or false. 

In any vector space, ax=bx implies that a=b.     (F) not so when x=0 

In any vector space, ax=ay implies that x=y.   (F) not so when a=0  

 

18. Let V= {( a1, a2) : a1, a2∈ℝ}. For (a1,a2), ( b1,b2)∈V and c∈ℝ, define  

(a1, a2) + (b1, b2) = (a1+2b1 ,  a2+3b2) and c(a1,a2) = (ca1,ca2). 

Is V a vector space over R with these operations? 

Solution: V is not a vector space, since “additive associativity (x+y)+z=x+(y+z)”  fails.  

Counter example: ((2,2)+(1,1)) + (½, ¹⁄ ₃)= (2+2, 2+3) + (½, ¹⁄ ₃) = (4,5) + (½, ¹⁄ ₃) = (4+1, 5+1) = (5,6) 

       But (2,2) + ((1,1)+(½, ¹⁄ ₃)) = (2,2) + (1+1, 1+1) = (2,2)+(2+2) = (2+2•2, 2+2•3) = (2+4, 2+6) = (6,8) 
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21. Let V and W be vector spaces over a field F. Let Z= {(v,w): v∈V and w∈W}. 

Prove that Z is a vector space over F with operations (v1, w1) + (v2,w2) = (v1 +v2,  w1+w2) and  
                  c(v1, w1) = (cv1, cw1). 

Proof:  Generally, the first component of a vector in Z inherits vector space properties from V, 
while the second component of a vector in Z inherits vector space properties from W.  

1) since V is a vector space, and W is a vector space, 

 ∀(v₁,u₁), (v₂,u₂)∈V, (v₁,u₁)+(v₂,u₂)= (v₁+v₂, u₁+u₂) =(v₂,u₂)+(v₁,u₁)=(v₂+v₁, u₂+u₁) 

 ⇒ for the first component, v₁+v₂ = v₂+v₁ 

 ∀(x₁,w₁), (x₂,w₂)∈W, (x₁,w₁)+(x₂,w₂)=(x₁+x₂, w₁+w₂)=(x₂,w₂)+(x₁,w₁)=(x₂+x₁, w₂+w₁) 

 ⇒ for the second component, w₁+w₂ = w₂+w₁ 

 By definition, (v1, w1) + (v2,w2) = (v1 +v2,  w1+w2)= (v₂+v₁, w₂+w₁) =(v2,w2) + (v1, w1)  

 ⇒ additive commutativity holds for Z. 

2) since V and W are vector spaces, ⇒ 

 ∀(v₁,u₁), (v₂,u₂), (v₃,u₃)∈V, ((v₁,u₁)+(v₂,u₂)) + (v₃,u₃) = (v₁,u₁)+ ((v₂,u₂) + (v₃,u₃)) 

 ⇒ for the first component, (v₁+v₂)+ v₃ = v₁+ (v₂+ v₃) 

 ∀(x₁,w₁), (x₂,w₂), (x₃,w₃)∈W, ((x₁,w₁)+(x₂,w₂)) + (x₃,w₃) = (x₁,w₁)+ ((x₂,w₂) + (x₃,w₃)) 

 ⇒ for the second component, (w₁+w₂) + w₃ =w₁+ (w₂+ w₃) 

        ⇒((v₁+v₂) + v₃, (w₁+w₂)+ w₃) =  (v₁+ (v₂+ v₃),   w₁+ (w₂+ w₃)) 

  ⇒ By definition,   ((v₁,w₁ ) + (v₂, w₂)) + (v₃,w₃) =  (v₁,w₁ ) + ((v₂, w₂) + (v₃,w₃)) 

 where (v₁,w₁ ),  (v₂, w₂), (v₃,w₃)∈Z  ⇒  additive associativity holds for Z. 

3) V,W are vector spaces ⇒ ∃ zero vector 0v for V and zero vector 0w  for W. 

⇒ the zero vector 0z for Z can be formed by  

 taking the first component of 0v, and the second component of 0w. 

check that (0v,0w) is the zero vector in Z. (v,w)+(0v,0w) = (v+0v , w+0w)= (v,w) 

4) since ∀(v,u) ∈V, ∃ (-v,-u) such that (v,u)+(-v,-u)=0v  ⇒  ∀v, ∃-v  s.t.  v+(-v)=0 

 ∀(x,w) ∈W, ∃ (-x,-w) such that (x,w)+(-x,-w)=0w      ⇒  ∀w, ∃-w  s.t.  w+(-w)=0 

⇒∀(v,w) ∈Z, ∃ (-v,-w) such that (v,w) + (-v,-w) = 0z 

5) ∀(v,u) ∈V,  1(v,u)=(v,u) ⇒ 1•v=v 

 ∀(x,w) ∈W, 1(x,w)=(x,w)  ⇒ 1•w=w 

⇒ by definition,  1(v,w)=(1•v, 1•w) where c=1, but  (1•v, 1•w) = (v,w)   ⇒ 1(v,w)= (v,w)    
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6) ∀a,b∈F, ∀(v,u) ∈V, a(b(v,u))= (ab)(v,u) and  ∀(x,w) ∈W, a(b(x,w))= (ab)(x,w)  

⇒ a(bv)= (ab)v   and  a(bw)= (ab)w    (*) 

⇒∀(v,w) ∈Z, a(b(v,w)) ≝a(bv,bw)   where c=b 

    ≝ (a(bv), a(bw))  where c=a 

    = ((ab)v, (ab)w) by (*) 

    ≝  (ab)(v,w)   where c=ab 

7) ∀c∈F, ∀(v₁,u₁), (v₂,u₂)∈V, c((v₁,u₁)+(v₂,u₂))= c(v₁,u₁)+c(v₂,u₂) ⇒c(v₁+v₂)=cv₁+cv₂ 

∀(x₁,w₁), (x₂,w₂)∈W, c((x₁,w₁)+(x₂,w₂))= c(x₁,w₁)+c(x₂,w₂) ⇒c(w₁+w₂)=cw₁+cw₂ 

⇒ ∀ (v₁,w₁),  (v₂, w₂)∈Z,  

c((v₁,w₁)+ (v₂, w₂))= c(v₁+v₂)+ c(w₁+w₂)= (cv₁+cv₂, cw₁+cw₂) = c(v₁,w₁)+c(v₂,w₂) 

8) ∀a,b∈F, ∀(v,u) ∈V,  (a+b)(v,u)=a(v,u)+b(v,u)=(av+bv, au+bu) ⇒(a+b)v= av+bv 

∀(x,w) ∈W, (a+b)(x,w)=a(x,w)+b(x,w)=(ax+bx,aw+bw) ⇒(a+b)w= aw+bw 

⇒∀(v,w) ∈Z, (a+b)(v,w)=(av+bv, aw+bw)= a(v,w)+b(v,w) 

 

 

1.3--8. Determine whether the sets are subspaces of R³ under the operations of addition and 
scalar multiplication defined on R³. 

A. W1 =  {(a1, a2, a3) ∈ℝ³  :   a1=3a2     &  a3 = –a2 } 

Every vector in W1  is of the form (a1, a2, a3) = (3a2, a2, –a2) = a2(3, 1, -1)      where a2 is a parameter. 

Geometrically, W1  is a line along the vector (3, 1, -1). The sum of any two vectors in W1   is 

also on the line; scalar multiplication will only change the length of the line segment.   

When a2=0, (a1, a2, a3)=(0,0,0)   ⇒ 0R³³³³∈W1   or the line is through the origin. 

⇒  W1  is a subspace of ℝ³ 

 

B. W2 = {(a1, a2, a3) ∈ℝ³  : a1 = a3+2 } 

Every vector in W2  is of the form  

(a1, a2, a3)=(a3+2, a2, a3)=  (2,0,0) + a2(0, 1, 0)+ a3(1,0,1) where a2, a3   are parameters. 

 This is a plane spanned by vectors (0, 1, 0) and (1,0,1). 

When a2=0= a3,  (a1, a2, a3)=(2,0,0) ⇒ 0R³³³³∉W2 ⇒  W2  is not a subspace of ℝ³ 



 4 

C. W3 = {(a1, a2 ,a3) ∈ℝ³  :   2a1 – 7a2 + a3 = 0 } 

Every vector in W3  is of the form (a1, a2, a3)=(a1, a2, -2a1 +7a2)=  a1(1,0,-2) + a2(0, 1, 7)  

When a1=0=a2, (a1, a2, a3)=(0,0,0)    ⇒ 0R³³³³∈W3     

This is a plane through the origin ⇒    W3  is a subspace of ℝ³ 

D. W4 = {(a1, a2 ,a3) ∈ℝ³ :   a1 – 4a2– a3 = 0  } 

Every vector in W4  is of the form  (a1, a2, a3)=(4a2+ a3, a2, a3)=  a2(4,1,0) + a3(1, 0, 1). 

 When a2=0=a3, (a1, a2, a3)=(0,0,0)    ⇒ 0R³³³³∈W4      

This is a plane through the origin.    ⇒  W4  is a subspace of ℝ³ 

E. W5 = {(a1, a2, a3)∈ℝ³:   a1 + 2a2–3a3 = 1 } 

∀v∈W5,  v= (a1, a2, a3) = (1-2a2+ 3a3, a2, a3) =  (1,0,0) + a2(-2, 1, 0) + a3(3, 0, 1)  

 when a2 = 0 = a3 ,  v=(1,0,0)  W5   represents a plane not through the origin 

⇒ W5  is a not subspace of ℝ³  since 0R³∉W5 

 

F. W6 = {(a1, a2, a3) ∈ℝ³:   5  a   1                 ² – 3a2
²      + 6 a 3²          = 0  }  

1◦   Notice that when a2= 0,   5  a  1      ²  + 6 a 3   ²          = 0    ⇒  (a1, a2, a3) = (0,0,0)      ⇒⇒⇒⇒     0R³³³³∈W6    

     W6  is a cone surface in ℝ³    

2◦   ∀c∈F, 5(ca1)² – 3(ca2)² + 6(ca3)² = c²(5  a   1                 ² – 3a2
²      + 6 a 3²     ) = c²(0) = 0     

⇒ (c(a1, a2, a3)) ∈W6        ⇒  W6  is closed under scalar multiplication. 

3◦ But for any two vectors (u,v,w) & (x,y,z)∈W6 their sum (u,v,w)+(x,y,z) = (u+x, v+y, w+z) 

But (a1, a2, a3) = (u+x, v+y, w+z) does not necessarily satisfy the equation 5  a1
² – 3a2

²      + 6 a3²          = 0   

5(u+x)²     -3(v+y)²     + 6(w+z)²     = 5(u²   +x²   +2ux) –3(v²   +y²   +2vy) + 6(w²   +z²   +2wz) 

   = (5u²   –3v²   +6w²       ) + (5x²   –3y²   +6z²     )+ 2(5ux –3vy + 6wz) 

   = 0 +0 +2(5ux –3vy + 6wz) where the cross terms are not guaranteed to get cancelled.  

⇒ W6 is not closed under addition.  Hence, W6 is not a subspace.    
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19. Let W1 and W2  be subspaces of a vector space V.  

Prove that W1⋃W2 is a subspace of V ⇔ W1⊆W2 or W2⊆W1 

First prove ⇐: 

Suppose W1⊆W2 or W2⊆W1, if  W1⊆W2, then W1⋃W2 = W2, which is a subspace of V. 

             if W2⊆W1, then W1⋃W2 = W1, which is also a subspace of V. 

In either case, W1⋃W2 is a subspace of V. 

 

Now prove ⇒ indirectly by a contradiction:  

Assume W1⋃W2 is a subspace of V, but W1⊈W2 and W2⊈W1, now look for a contradiction. 

 W1⊈W2    ⇒ ∃ a vector u∉W2 but u∈W1           ⇒   u∈ W1⋃W2 

 W2⊈W1 ⇒ ∃ a vector ((((****))))    v∉W1  but v∈W2     ⇒ v∈ W1⋃W2 

 W1⋃W2 is a subspace of V   ⇒ (u+v)∈W1⋃W2 By property of additive closure of a subspace. 

 ⇒ (u+v)∈W1 or (u+v)∈W2.    

 Assume that (u+v)∈W1.  But u∈W1    ⇒ its inverse (-u)∈W1  

 W1 is a subspace of V ⇒ (-u)+(u+v) ∈W1    by  additive closure of  a subspace  
 
 But (-u)+(u+v) = ((-u) +u) + v   by additive associativity of a vector space 
 
      = 0 + v  = v∈W1           ⇒ a contradiction with assumption ((((****))))    

 

 ⇒ Assumption W2⊈W1 must be wrong,  

i.e. W2⊆W1  holds  

⇒ so does   W1⊆W2 or W2⊆W1               □□□□ 


