$\S 1.4$

1-f. Every system of linear equations has a solution.
False.

2-f. Solve the system of linear equations:

$$
\begin{align*}
& x+2 y+6 z=-1 \\
& \text { (1) } \quad \Rightarrow \quad x=-1-2 y-6 z \\
& 2 x+y+z=8 \tag{2}\\
& 3 x+y-z=15 \tag{3}\\
& x+3 y+10 z=-5 \tag{4}\\
& \text { (2)-2(1) } \quad \Rightarrow \quad-3 y-11 z=10 \tag{i}\\
& (4)-(1) \quad \Rightarrow \quad y+4 z=-4 \\
& \text { (ii) } \Rightarrow \quad y=-4-4 z \\
& \text { (i)+3(ii) } \\
& \Rightarrow \quad \mathrm{Z}=-2 \\
& \Rightarrow \quad y=-4-4(-2)=4 \\
& \Rightarrow \quad x=-1-2(4)-6(-2)=3
\end{align*}
$$

Answer: $(x, y, z)=(3,4,-2)$
3-f. Determine whether the first vector can be written as a linear combination of the other two.

$$
(-2,2,2) \quad(1,2,-1) \quad(-3,-3,3)
$$

Suppose that it can, then let $(-2,2,2)=a(1,2,-1)+b(-3,-3,3)=(a-3 b, 2 a-3 b,-a+3 b)$

$$
\Rightarrow\left\{\begin{array}{cc}
* a-3 b=-2 & \Rightarrow a=3 b-2 \\
2 a-3 b=2 & \Rightarrow 2(3 b-2)-3 b=2 \quad \Rightarrow \quad b=2 \quad \Rightarrow \quad a=3(2)-2=4 \\
-a+3 b=2 & \\
\text { notice that this equation agrees with } * \quad \Rightarrow \text { this is a consistent system }
\end{array}\right.
$$

Answer: $(-2,2,2)$ can be written as $\mathbf{4}(1,2,-1)+\mathbf{2}(-3,-3,3)$ or $(-2,2,2) \in \operatorname{span}\{(1,2,-1),(-3,-3,3)\}$

4-f. Determine whether the first polynomial can be expressed as a linear combination of the other two.
$6 x^{3}-3 x^{2}+x+2, \quad x^{3}-x^{2}+2 x+3, \quad 2 x^{3}-3 x+1$
Assume that it can, then let $\quad\left(6 x^{3}-3 x^{2}+x+2\right)=a\left(x^{3}-x^{2}+2 x+3\right)+b\left(2 x^{3}-3 x+1\right)$
Notice that the last polynomial does not have X^{2} term,
so if the first polynomial can be written as l.c. of the other two, then $-3 x^{2}=-a x^{2} \Rightarrow a=3$
Now consider constant terms in all three polynomials, $2=a(3)+b(1)=3(3)+b=9+b$

$$
\Rightarrow \mathrm{b}=-7 \quad *
$$

Now consider x^{3} terms in all three, $\quad 6 x^{3}=a x^{3}+b\left(2 x^{3}\right)=3 x^{3}+2 b x^{3} \quad \Rightarrow \quad 2 b+3=6$ $\Rightarrow \mathrm{b}=3 / 2 \quad$ a contradiction with *
Answer: No, it cannot.

5-h. Determine whether vector w is in the span of S.
$\mathbf{w}=\left|\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right| \quad S=\left\{\left|\begin{array}{rr}1 & 0 \\ -1 & 0\end{array}\right|, \quad\left|\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right|, \quad\left|\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right|\right\}$
Solution: Let $S=\left\{\begin{array}{lll}\mathbf{x}, \quad \mathbf{y}, \quad \mathbf{z}\end{array}\right\}$
Suppose that $\mathbf{w} \in \operatorname{span}(S)$, then \mathbf{w} can be written as a linear combination of $\mathbf{x}, \mathbf{y}, \mathbf{z}$.
Let $\mathbf{w}=\mathrm{ax}+\mathrm{by}+\mathrm{cz} \quad$ * where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{F}$
Consider all 4 matrices, notice that \mathbf{x} is the only matrix with a nonzero southwest entry.
So $a=0 . \Rightarrow$ equation * becomes $\mathbf{w}=b \mathbf{y}+c \mathbf{z}$.
Notice that the southeast entry of \mathbf{z} is 0 , but those of \mathbf{w} and \mathbf{y} are both 1 .
$\Rightarrow \mathrm{b}=1$.
Similarly, the northwest entry of \mathbf{y} is 0 , but those of \mathbf{w} and \mathbf{z} are both 1 .
$\Rightarrow \mathrm{c}=1$.
$\Rightarrow \mathbf{w}=\mathrm{by}+\mathrm{cz}=(1) \mathrm{y}+(1) \mathrm{z}=\mathrm{y}+\mathrm{z}$
but $\mathbf{y}+\mathbf{z}=\left|\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right|+\left|\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right|=\left|\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right| \neq \mathbf{w} \quad \Rightarrow \quad *$ does not hold $\quad \Rightarrow$
Answer: w \notin span(S)
10. show that if $X=\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|, Y=\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|, Z=\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|$
then the span of $\{X, Y, Z\}$ is the set of all symmetric $2 * 2$ matrices.
Proof:
By definition, $a 2 * 2$ symmetric matrix M is of the form $\left|\begin{array}{ll}a & b \\ b & c\end{array}\right|=a\left|\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right|+c\left|\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right|+b\left|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right|$

$$
\Rightarrow \quad M=a X+c Y \quad+b Z
$$

$\Rightarrow M$ can be written as a linear combination of X, Y, and $Z . \Leftrightarrow M \in \operatorname{span}(\{X, Y, Z\})$.
If an arbitrary $2 * 2$ symmetric matrix M is in span $\{X, Y, Z\}$, then all are in.

