© | Dror Bar-Natan: Academic Pensieve: Blackboard Shots: wClips:
120111-133952: vB_n.
Random
newer
older
up

cycle text mode
wClips-{ hide text
  120620-132027: Future plans.
  120530-135829: R3 as a composition of diffeomorphisms (2).
  120530-135516: R3 as a composition of diffeomorphisms.
  120530-135145: R as a diffeomorphism (2).
  120530-134642: R as a diffeomorphism.
  120530-133843: The adjoint and div (2).
  120530-133616: The adjoint and div.
  120530-132304: Verifying that the bracket goes to the commutator (2).
  120530-132037: Verifying that the bracket goes to the commutator.
  120530-131156: The tangential vector fields.
  120530-130716: The map into differential operators.
  120530-125218: Review of wheels, trees, div, and j.
  120523-135927: div (3).
  120523-135531: div (2).
  120523-134654: div.
  120523-133943: The splitting.
  120523-133509: Comparing the brackets, more conceptually (2).
  120523-133050: Comparing the brackets, more conceptually.
  120523-132729: Comparing the brackets (5).
  120523-132320: Comparing the brackets (4).
  120523-131621: Comparing the brackets (3).
  120523-130834: Comparing the brackets (2).
  120523-130329: Comparing the brackets.
  120523-125831: Primitives, wheels, and trees (4).
  120523-125534: Primitives, wheels, and trees (3).
  120523-125424: Primitives, wheels, and trees (2).
  120523-124956: Primitives, wheels, and trees.
  120510-140700: ${\mathcal A}^w$ and Alekseev-Torossian spaces (2).
  120510-135047: Wheels and trees (2).
  120510-134619: Wheels and trees.
  120510-134243: Milnor-Moore and primitives.
  120510-133424: ${\mathcal A}^w$ and Alekseev-Torossian spaces.
  120510-132343: Proof of head invariance.
  120510-131406: Bracket rise for w, head invariance.
  120510-130722: Bracket rise for w.
  120510-130448: v-Tangles, w-Tangles, their candidate projectivizations, and the w-expansion.
  120510-130052: v-Tangles, w-Tangles, and their candidate projectivizations.
  120502-134819: v-Tangles and w-Tangles.
  120502-134627: Circuit Algebras with Skeleta.
  120502-133941: Examples of Circuit Algebras (2).
  120502-133529: Examples of Circuit Algebras.
  120502-132813: Circuit Algebras.
  120502-132309: Wiring diagrams (2).
  120502-131940: Wiring diagrams.
  120502-131204: Review of $\mathcal A$-Expansions (2).
  120502-130529: Review of $\mathcal A$-Expansions.
  120502-130049: Review of Expansions (3).
  120502-125327: Review of Expansions (2).
  120502-125022: Review of Expansions.
  120502-124716: Review of Algebraic Structures.
  120425-140422: Relations between $\Lambda$ and $Y$.
  120425-140058: $\Lambda$.
  120425-135210: The IAM Relations.
  120425-132710: E(LHS).
  120425-130406: E(RHS).
  120425-124359: Dreams on an Alexander homology.
  120418-135500: The BCH Formula (3).
  120418-134601: The BCH Formula (2).
  120418-133856: The Differential of the Exponential Function (3).
  120418-133226: The Differential of the Exponential Function (2).
  120418-132328: The Differential of the Exponential Function.
  120418-131408: The BCH Formula.
  120418-130327: The Euler Trick (3).
  120418-125634: The Euler Trick (2).
  120418-125036: The Euler Trick.
  120418-124645: Detached wheels and hairy Y's.
  120418-124122: Statement of the Alexander Theorem.
  120404-130233: EZ.
  120404-125832: The Euler operator.
  120404-125306: Exercise 3.21: Detached wheels and hairy Y's.
  120404-124504: Exercise 3.20: Commutators Commute.
  120404-123625: A simplified version of the w-Alexander theorem.
  120404-122952: The w-Alexander theorem (Theorem 3.27).
  120404-122243: A classical formula for the Alexander polynomial.
  120404-120711: A conjectured formula for the Alexander polynomial.
  120404-115926: The trapping matrix.
  120404-115032: What's $Z^w$ on knots?
  120328-152816: Bicrossed scratch.
  120321-140025: Homomorphic expansions.
  120321-135847: Expansions.
  120321-135345: Quandles and Leibniz algebras (5).
  120321-134725: Quandles and Leibniz algebras (4).
  120321-133830: Quandles and Leibniz algebras (3).
  120321-133421: Quandles and Leibniz algebras (2).
  120321-132900: Quandles and Leibniz algebras.
  120321-132356: Quandles defined (2).
  120321-131614: Quandles defined.
  120321-131212: Groups and associative algebras.
  120321-130513: Operations on proj.
  120321-130125: ${\mathcal I}^m$ and the projectivization.
  120321-125146: The augmentation ideal.
  120321-124643: Examples - Actions, Quandles, QTGs, fibered situations.
  120321-124229: Examples - groups and group homomorphisms.
  120321-123740: Algebraic Structures.
  120314-140441: The 2D example and ${\mathcal T}$ (2).
  120314-140017: The 2D example and ${\mathcal T}$.
  120314-135504: ${\mathcal T}$ descends to ${\mathcal A}^{wt}$ (4).
  120314-134812: ${\mathcal T}$ descends to ${\mathcal A}^{wt}$ (3).
  120314-134227: ${\mathcal T}$ descends to ${\mathcal A}^{wt}$ (2).
  120314-133959: ${\mathcal T}$ descends to ${\mathcal A}^{wt}$.
  120314-133340: The map ${\mathcal T}$.
  120314-132622: The 2D example.
  120314-131943: The co-commutative case.
  120314-131527: The double is metrized (4).
  120314-130813: The double is metrized (3).
  120314-130520: The double is metrized (2).
  120314-130022: The double is metrized.
  120314-125800: What is $I{\mathfrak g}$? (2)
  120314-125144: What is $I{\mathfrak g}$?
  120314-124450: The tensor map claim.
  120314-123935: ${\mathcal A}^w$ and ${\mathcal A}^{wt}$.
  120307-140335: ${\mathcal A}^w(\bigcirc)$ (2).
  120307-135824: ${\mathcal A}^w(\bigcirc)$.
  120307-135109: Proof of bracket-rise (3).
  120307-134836: Proof of bracket-rise (2).
  120307-134130: Proof of bracket-rise.
  120307-132355: Caravans of wheels and trees.
  120307-131928: Wheels and trees.
  120307-130936: The "bracket-rise" theorem.
  120307-130443: ${\mathcal A}^{wt}$.
  120307-124327: $Z^w$ is well-defined.
  120307-124140: $Z^w$.
  120229-135002: The Milnor-Moore theorem.
  120229-134612: The product and the co-product.
  120229-134106: ${\mathcal A}^{v,w}(\uparrow)$ and ${\mathcal A}^{v,w}(\bigcirc)$.
  120229-133825: $\alpha:{\mathcal A}^u\to{\mathcal A}^v$.
  120229-133213: 4T.
  120229-132915: 6T.
  120229-132549: ${\mathcal A}^{v,w}$.
  120229-132431: Type $m$ invariants and their weight systems.
  120229-132021: Semi-virtual crossings.
  120229-130442: Framed and unframed long v-knots: proofs.
  120229-130311: Framed and unframed long v-knots: the compositions.
  120229-125332: Framed and unframed long v-knots: $h$.
  120229-124714: Framed and unframed long v-knots: $\iota$ and $sl$.
  120229-124547: Classical linkinf and self-linking numbers.
  120229-124517: Framed and unframed long v-knots, day 2.
  120222-133119: Framed and unframed long v-knots.
  120222-132410: The self-linking numbers (2).
  120222-131844: The self-linking numbers.
  120222-130333: ${\mathcal K}^v$ is a non-Abelian monoid.
  120222-130027: Long v-Knots and circular v-Knots.
  120222-125634: u-Knots, v-Knots, w-Knots.
  120222-124827: There's no $Z$ compatible with $\alpha$.
  120222-124329: $\alpha:{\mathcal A}^u\to{\mathcal A}^w$.
  120215-140055: 2.5.3 Uniqueness of a well-behaved homomorphic expansion.
  120215-135838: 2.5.2 Injectivity; 2.5.3 Non-uniqueness in the non-homomorphic case.
  120215-135308: 2.5.1.5 Compatibility with the action on the free group (2).
  120215-134523: 2.5.1.5 Compatibility with the action on the free group.
  120215-133809: 2.5.1.6 Non-compatability with strand doubling/unzipping.
  120215-133052: 2.5.1.4 Compatibility with strand deletions (2).
  120215-132709: 2.5.1.4 Compatibility with strand deletions.
  120215-132242: 2.5.1.3 Compatibility with strand insertions.
  120215-131538: The Magnus and the exponential expansions for the free group.
  120215-130448: 2.5.1.2 Compatibility with braids cloning (2).
  120215-125912: 2.5.1.2 Compatibility with braids cloning.
  120215-125131: 2.5.1.1. Compatibility with braid invertion.
  120215-123443: Review of $G\to{\mathcal A}^Q(G)$ and functoriality.
  120208-140123: Checking R3 for $Z^w$.
  120208-135721: uvw Table (5).
  120208-135214: Expansions and homomorphic expansions.
  120208-134550: Deriving 4T-Arrow.
  120208-134035: Deriving 4T.
  120208-133640: uvw Table (4).
  120208-133300: Deriving locality and tails-commute.
  120208-132729: Deriving the 6T relation.
  120208-131944: uvw Table (3).
  120208-131634: Generating $I^n/I^{n+1}$ (2).
  120208-130902: Generating $I^n/I^{n+1}$.
  120208-130150: Semi-virtuals crossings and their arrows.
  120208-125305: Singular braids and chord diagrams.
  120208-124632: uvw Table (2).
  120208-124221: uvw Table.
  120201-140238: Z^w.
  120201-135822: Homomorphic QUFTI.
  120201-135630: The fundamental theorem and QUFTI (3).
  120201-135220: The fundamental theorem and QUFTI (2).
  120201-134536: The fundamental theorem and QUFTI.
  120201-134345: The "central" question of FTI.
  120201-133806: QUFTI as filtered maps (2).
  120201-133441: QUFTI as filtered maps.
  120201-133243: gr is a functor.
  120201-132843: Quadratic Universal Finite Type Invariant(s) (QUFTI).
  120201-132314: A^w.
  120201-131843: A^v.
  120201-131250: 6T / CYB.
  120201-130713: Quadratic relations.
  120201-130408: Arrow diagrams (2).
  120201-130036: Arrow diagrams.
  120201-125709: What are the generators? What are the relations?
  120201-125045: The PvBn case.
  120201-124604: Type p invariants.
  120201-124249: The augmentation ideal and its powers.
  120125-140415: Chord diagrams for braids.
  120125-140131: Chord diagrams for knots.
  120125-135825: The top derivative is constant.
  120125-135010: The definition of finite-type invariants.
  120125-134559: Resolving double points.
  120125-132756: The two actions of PvB_n (2).
  120125-132316: The two actions of PvB_n.
  120125-131956: No semi-direct structure in the w case.
  120125-131513: The "u" case.
  120125-130948: The action in the pure case.
  120125-130706: The action on the product of all generators.
  120125-130211: The action of real crossings (2).
  120125-130204: The action of real crossings.
  120125-124729: The action of virtual crossings.
  120125-124134: Action by conjugation.
  120125-123642: McCool's Theorem.
  120125-122827: Artin's theorem.
  120118-135356: A presentation with wens (2).
  120118-134845: A presentation with wens.
  120118-133727: Non-horizontal flying rings.
  120118-133344: Ribbon singularities.
  120118-130809: Horizontal flying rings as a fundamental group.
  120118-125803: wB_n.
  120118-125435: UC and OC.
  120118-125422: The "\sigma_{ij}" presentation of PvB_n.
  120118-125101: The "Yang-Baxter" relation.
  120118-124119: v-Braids, again.
  120111-140241: The wrong definition of uB_n is the right definition of vB_n.
  120111-135722: vB_n as a semi-direct product with S_n.
  120111-134813: Overcrossings don't commute and undercrossings don't commute.
  120111-133959: The detour move.
  120111-133952: vB_n.
  120111-130844: A knot on a surface.
  120111-130836: u, v, and w.
  120111-130829: Topology, combinatorics, low algebra, high algebra.
}
wClips is part of the wideo clip companion to the WKO paper.

Notes for BBS/wClips-120111-133952.jpg:    [edit]