© | Dror Bar-Natan: Academic Pensieve: Blackboard Shots: 25-1301:
250115-112345: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (9).
Random
newer
older
up

cycle text mode
25-1301-{ hide text
  250121-162901: Mon 250120 H7: Borsuk-Ulam (6).
  250121-162900: Mon 250120 H7: Borsuk-Ulam (5).
  250121-162859: Mon 250120 H7: Borsuk-Ulam (4).
  250121-162858: Mon 250120 H7: Borsuk-Ulam (3).
  250121-162857: Mon 250120 H7: Borsuk-Ulam (2).
  250121-162856: Mon 250120 H7: Borsuk-Ulam.
  250115-112346: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (10).
  250115-112345: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (9).
  250115-112344: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (8).
  250115-112343: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (7).
  250115-112342: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (6).
  250115-112341: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (5).
  250115-112340: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (4).
  250115-112339: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (3).
  250115-112338: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (2).
  250115-112337: Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem.
  250114-075239: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (7).
  250114-075238: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (6).
  250114-075237: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (5).
  250114-075236: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (4).
  250114-075235: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (3).
  250114-075234: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (2).
  250114-075233: Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra.
  250107-162817: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (14).
  250107-162816: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (13).
  250107-162815: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (12).
  250107-162814: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (11).
  250107-162813: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (10).
  250107-162812: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (9).
  250107-162811: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (8).
  250107-162810: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (7).
  250107-162809: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (6).
  250107-162808: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (5).
  250107-162807: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (4).
  250107-162806: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (3).
  250107-162805: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (2).
  250107-162804: Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$.
  250106-142329: Mon 250106 H1: The definition of $\pi_1$ (7).
  250106-142328: Mon 250106 H1: The definition of $\pi_1$ (6).
  250106-142327: Mon 250106 H1: The definition of $\pi_1$ (5).
  250106-142326: Mon 250106 H1: The definition of $\pi_1$ (4).
  250106-142325: Mon 250106 H1: The definition of $\pi_1$ (3).
  250106-142324: Mon 250106 H1: The definition of $\pi_1$ (2).
  250106-142323: Mon 250106 H1: The definition of $\pi_1$.
}
Notes for BBS/25-1301-250115-112345.jpg:    [edit]