© | Dror Bar-Natan: Academic Pensieve: Blackboard Shots: Leung:
090122-113225: The more general gl(N) arrow-weight-system.

cycle text mode
Leung-{ hide text
  100712-131330: Universal gl(N) in greater detail.
  100630-123429: A, Aarrow, G, Gtilde.
  100406-140315: The injectivity of V->U(gl_n) (2).
  100401-151441: The injectivity of V->U(gl_n).
  100316-130250: A funny map from U(gl_k) to U(gl_n).
  100309-123802: Bulk quantities, names, interpretations.
  091123-175610: The gl(N) Lie-bialgebra, revisited.
  091106-164740: The other bi-algebra structure on sl(2).
  091023-163629: Factorial basis for descending.
  091009-170956: The EK-Verma isomorphism in degree 1.
  090227-133555: so(2N) (2).
  090227-132523: so(2N).
  090122-113225: The more general gl(N) arrow-weight-system.
  090119-114318: The two juggling diagrams.
  090112-113529: 6T.
  090106-140729: Wgl for links.
  081219-112510: An example arrow diagram.
  081218-145854: Enumeration of Arrow Diagrams, a start on the gl(N) computation.
  080924-143035: Directed marked Jacobi diagrams.
  080917-144216: Surfaces are graphs modulo relations.
  080805-113556: 6T for SO.
  080229-153603: Blobs in arrow diagrams.
  080131-151919: A proof of 6T for gl(N).
  080129-162421: The weight system of the bialgebra associated with a semi-simple Lie algebra.
  071213-142750: The SO(2N) Lie bialgebra weight system.
Notes for BBS/Leung-090122-113225.jpg:    [edit]