© | Dror Bar-Natan: Academic Pensieve: Blackboard Shots: Random

Blackboard Shots with Prefix "24-327"

24-327 is 2024 MAT 327 - Introduction to Topology.. These blackboard shots are given with no warranty of any type. They may contain errors or omissions.


241024-171201: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (20).

241024-171200: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (19).

241024-171159: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (18).

241024-171158: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (17).

241024-171157: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (16).

241024-171156: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (15).

241024-171155: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (14).

241024-171154: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (13).

241024-171153: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (12).

241024-171152: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (11).

241024-171151: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (10).

241024-171150: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (9).

241024-171149: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (8).

241024-171148: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (7).

241024-171147: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (6).

241024-171146: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (5).

241024-171145: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (4).

241024-171144: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (3).

241024-171143: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (2).

241024-171142: Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$.

241022-165825: Oct 22 H22: Compactness basics (12).

241022-165824: Oct 22 H22: Compactness basics (11).

241022-165823: Oct 22 H22: Compactness basics (10).

241022-165822: Oct 22 H22: Compactness basics (9).

241022-165821: Oct 22 H22: Compactness basics (8).

241022-165820: Oct 22 H22: Compactness basics (7).

241022-165819: Oct 22 H22: Compactness basics (6).

241022-165818: Oct 22 H22: Compactness basics (5).

241022-165817: Oct 22 H22: Compactness basics (4).

241022-165816: Oct 22 H22: Compactness basics (3).

241022-165815: Oct 22 H22: Compactness basics (2).

241022-165814: Oct 22 H22: Compactness basics.

241019-080032: Connectedness and products (19).

241019-080031: Connectedness and products (18).

241019-080030: Connectedness and products (17).

241019-080029: Connectedness and products (16).

241019-080028: Connectedness and products (15).

241019-080027: Connectedness and products (14).

241019-080026: Connectedness and products (13).

241019-080025: Connectedness and products (12).

241019-080024: Connectedness and products (11).

241019-080023: Connectedness and products (10).

241019-080022: Connectedness and products (9).

241019-080021: Connectedness and products (8).

241019-080020: Connectedness and products (7).

241019-080019: Connectedness and products (6).

241019-080018: Connectedness and products (5).

241019-080017: Connectedness and products (4).

241019-080016: Connectedness and products (3).

241019-080015: Connectedness and products (2).

241019-080014: Connectedness and products.

241015-212829: Tue Oct 15 H19: Connected spaces (10).

241015-212828: Tue Oct 15 H19: Connected spaces (9).

241015-212827: Tue Oct 15 H19: Connected spaces (8).

241015-212826: Tue Oct 15 H19: Connected spaces (7).

241015-212825: Tue Oct 15 H19: Connected spaces (6).

241015-212824: Tue Oct 15 H19: Connected spaces (5).

241015-212823: Tue Oct 15 H19: Connected spaces (4).

241015-212822: Tue Oct 15 H19: Connected spaces (3).

241015-212821: Tue Oct 15 H19: Connected spaces (2).

241015-212820: Tue Oct 15 H19: Connected spaces.

241010-173958: Thu Oct 10 H17-18: Quotient spaces, connected spaces (17).

241010-173957: Thu Oct 10 H17-18: Quotient spaces, connected spaces (16).

241010-173956: Thu Oct 10 H17-18: Quotient spaces, connected spaces (15).

241010-173955: Thu Oct 10 H17-18: Quotient spaces, connected spaces (14).

241010-173954: Thu Oct 10 H17-18: Quotient spaces, connected spaces (13).

241010-173953: Thu Oct 10 H17-18: Quotient spaces, connected spaces (12).

241010-173952: Thu Oct 10 H17-18: Quotient spaces, connected spaces (11).

241010-173951: Thu Oct 10 H17-18: Quotient spaces, connected spaces (10).

241010-173950: Thu Oct 10 H17-18: Quotient spaces, connected spaces (9).

241010-173949: Thu Oct 10 H17-18: Quotient spaces, connected spaces (8).

241010-173948: Thu Oct 10 H17-18: Quotient spaces, connected spaces (7).

241010-173947: Thu Oct 10 H17-18: Quotient spaces, connected spaces (6).

241010-173946: Thu Oct 10 H17-18: Quotient spaces, connected spaces (5).

241010-173945: Thu Oct 10 H17-18: Quotient spaces, connected spaces (4).

241010-173944: Thu Oct 10 H17-18: Quotient spaces, connected spaces (3).

241010-173943: Thu Oct 10 H17-18: Quotient spaces, connected spaces (2).

241010-173942: Thu Oct 10 H17-18: Quotient spaces, connected spaces.

241009-062543: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (9).

241009-062542: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (8).

241009-062541: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (7).

241009-062540: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (6).

241009-062539: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (5).

241009-062538: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (4).

241009-062537: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (3).

241009-062536: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (2).

241009-062535: Tue Oct 8 H16: Metrizabilifty and products, quotient spaces.

241003-185843: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (19).

241003-185842: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (18).

241003-185841: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (17).

241003-185840: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (16).

241003-185839: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (15).

241003-185838: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (14).

241003-185837: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (13).

241003-185836: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (12).

241003-185835: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (11).

241003-185834: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (10).

241003-185833: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (9).

241003-185832: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (8).

241003-185831: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (7).

241003-185830: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (6).

241003-185829: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (5).

241003-185828: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (4).

241003-185827: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (3).

241003-185826: Thu Oct 3 H14-15: Metrizability, sequential closure, and products (2).

241003-185825: Thu Oct 3 H14-15: Metrizability, sequential closure, and products.

241001-163841: Tue Oct 1 H13: Products, metric spaces (6).

241001-163840: Tue Oct 1 H13: Products, metric spaces (5).

241001-163839: Tue Oct 1 H13: Products, metric spaces (4).

241001-163838: Tue Oct 1 H13: Products, metric spaces (3).

241001-163837: Tue Oct 1 H13: Products, metric spaces (2).

241001-163836: Tue Oct 1 H13: Products, metric spaces.

240927-141129: Continuity, products and the axiom of Choice, the box and the cylinder topology (18).

240927-141128: Continuity, products and the axiom of Choice, the box and the cylinder topology (17).

240927-141127: Continuity, products and the axiom of Choice, the box and the cylinder topology (16).

240927-141126: Continuity, products and the axiom of Choice, the box and the cylinder topology (15).

240927-141125: Continuity, products and the axiom of Choice, the box and the cylinder topology (14).

240927-141124: Continuity, products and the axiom of Choice, the box and the cylinder topology (13).

240927-141123: Continuity, products and the axiom of Choice, the box and the cylinder topology (12).

240927-141122: Continuity, products and the axiom of Choice, the box and the cylinder topology (11).

240927-141121: Continuity, products and the axiom of Choice, the box and the cylinder topology (10).

240927-141120: Continuity, products and the axiom of Choice, the box and the cylinder topology (9).

240927-141119: Continuity, products and the axiom of Choice, the box and the cylinder topology (8).

240927-141118: Continuity, products and the axiom of Choice, the box and the cylinder topology (7).

240927-141117: Continuity, products and the axiom of Choice, the box and the cylinder topology (6).

240927-141116: Continuity, products and the axiom of Choice, the box and the cylinder topology (5).

240927-141115: Continuity, products and the axiom of Choice, the box and the cylinder topology (4).

240927-141114: Continuity, products and the axiom of Choice, the box and the cylinder topology (3).

240927-141113: Continuity, products and the axiom of Choice, the box and the cylinder topology (2).

240927-141112: Continuity, products and the axiom of Choice, the box and the cylinder topology.

240925-061656: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (10).

240925-061655: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (9).

240925-061654: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (8).

240925-061653: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (7).

240925-061652: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (6).

240925-061651: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (5).

240925-061650: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (4).

240925-061649: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (3).

240925-061648: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces (2).

240925-061647: Class of Tuesday Septembet 24: Limit points, Hausdorff spaces.

240919-221641: Class of Thursday September 19: Closed sets (17).

240919-221639: Class of Thursday September 19: Closed sets (16).

240919-221638: Class of Thursday September 19: Closed sets (15).

240919-221637: Class of Thursday September 19: Closed sets (14).

240919-221636: Class of Thursday September 19: Closed sets (13).

240919-221635: Class of Thursday September 19: Closed sets (12).

240919-221634: Class of Thursday September 19: Closed sets (11).

240919-221633: Class of Thursday September 19: Closed sets (10).

240919-221632: Class of Thursday September 19: Closed sets (9).

240919-221631: Class of Thursday September 19: Closed sets (8).

240919-221630: Class of Thursday September 19: Closed sets (7).

240919-221629: Class of Thursday September 19: Closed sets (6).

240919-221628: Class of Thursday September 19: Closed sets (5).

240919-221627: Class of Thursday September 19: Closed sets (4).

240919-221626: Class of Thursday September 19: Closed sets (3).

240919-221625: Class of Thursday September 19: Closed sets (2).

240919-221624: Class of Thursday September 19: Closed sets.

240917-163034: Class of Tuesday September 17: Mostly the subspace topology (8).

240917-163033: Class of Tuesday September 17: Mostly the subspace topology (7).

240917-163032: Class of Tuesday September 17: Mostly the subspace topology (6).

240917-163031: Class of Tuesday September 17: Mostly the subspace topology (5).

240917-163030: Class of Tuesday September 17: Mostly the subspace topology (4).

240917-163029: Class of Tuesday September 17: Mostly the subspace topology (3).

240917-163028: Class of Tuesday September 17: Mostly the subspace topology (2).

240917-163027: Class of Tuesday September 17: Mostly the subspace topology.

240912-183855: Class of Thursday September 12: Bases, Orders, Products (18).

240912-183854: Class of Thursday September 12: Bases, Orders, Products (17).

240912-183853: Class of Thursday September 12: Bases, Orders, Products (16).

240912-183852: Class of Thursday September 12: Bases, Orders, Products (15).

240912-183851: Class of Thursday September 12: Bases, Orders, Products (14).

240912-183850: Class of Thursday September 12: Bases, Orders, Products (13).

240912-183849: Class of Thursday September 12: Bases, Orders, Products (12).

240912-183848: Class of Thursday September 12: Bases, Orders, Products (11).

240912-183847: Class of Thursday September 12: Bases, Orders, Products (10).

240912-183846: Class of Thursday September 12: Bases, Orders, Products (9).

240912-183845: Class of Thursday September 12: Bases, Orders, Products (8).

240912-183844: Class of Thursday September 12: Bases, Orders, Products (7).

240912-183843: Class of Thursday September 12: Bases, Orders, Products (6).

240912-183842: Class of Thursday September 12: Bases, Orders, Products (5).

240912-183841: Class of Thursday September 12: Bases, Orders, Products (4).

240912-183840: Class of Thursday September 12: Bases, Orders, Products (3).

240912-183839: Class of Thursday September 12: Bases, Orders, Products (2).

240912-183838: Class of Thursday September 12: Bases, Orders, Products.

240910-175349: Class of Tuesday September 10: Comparing topologies, bases for topologies (9).

240910-175348: Class of Tuesday September 10: Comparing topologies, bases for topologies (8).

240910-175347: Class of Tuesday September 10: Comparing topologies, bases for topologies (7).

240910-175346: Class of Tuesday September 10: Comparing topologies, bases for topologies (6).

240910-175345: Class of Tuesday September 10: Comparing topologies, bases for topologies (5).

240910-175344: Class of Tuesday September 10: Comparing topologies, bases for topologies (4).

240910-175343: Class of Tuesday September 10: Comparing topologies, bases for topologies (3).

240910-175342: Class of Tuesday September 10: Comparing topologies, bases for topologies (2).

240910-175341: Class of Tuesday September 10: Comparing topologies, bases for topologies.

240905-163900: Class of Thursday September 5: The definition of a topology (15).

240905-163859: Class of Thursday September 5: The definition of a topology (14).

240905-163858: Class of Thursday September 5: The definition of a topology (13).

240905-163857: Class of Thursday September 5: The definition of a topology (12).

240905-163856: Class of Thursday September 5: The definition of a topology (11).

240905-163855: Class of Thursday September 5: The definition of a topology (10).

240905-163854: Class of Thursday September 5: The definition of a topology (9).

240905-163853: Class of Thursday September 5: The definition of a topology (8).

240905-163852: Class of Thursday September 5: The definition of a topology (7).

240905-163851: Class of Thursday September 5: The definition of a topology (6).

240905-163850: Class of Thursday September 5: The definition of a topology (5).

240905-163849: Class of Thursday September 5: The definition of a topology (4).

240905-163848: Class of Thursday September 5: The definition of a topology (3).

240905-163847: Class of Thursday September 5: The definition of a topology (2).

240905-163846: Class of Thursday September 5: The definition of a topology.

240903-162845: Class of Tuesday September 3 (8).

240903-162844: Class of Tuesday September 3 (7).

240903-162843: Class of Tuesday September 3 (6).

240903-162842: Class of Tuesday September 3 (5).

240903-162841: Class of Tuesday September 3 (4).

240903-162840: Class of Tuesday September 3 (3).

240903-162839: Class of Tuesday September 3 (2).

240903-162838: Class of Tuesday September 3.