


The Hardest Math I've Ever Really Used, 1

Dror Bar-Natan at the How to Talk Mathematics Seminar

Toronto, February 2026

<http://drorbn.net/to26>

Al Gore in Futurama, circa 3000AD

Non-Commutative Gaussian Elimination and Rubik's Cube

Joint study with Itai Bar-Natan

Dror Bar-Natan: Talk:
Mathcamp-0907:
The Problem. Let $G = \langle g_1, \dots, g_n \rangle$ be a subgroup of S_n , with $n = O(100)$. Before you die, understand G :

1. Compute $|G|$.
2. Given $\sigma \in S_n$, decide if $\sigma \in G$.
3. Write a $\sigma \in G$ in terms of g_1, \dots, g_n .
4. Produce random elements of G .

The Commutative Analog. Let $V = \text{span}(v_1, \dots, v_n)$ be a subspace of \mathbb{R}^n . Before you die, understand V .

Solution: Gaussian Elimination. Prepare an empty table,

1	2	3	4	...	$n-1$	n
---	---	---	---	-----	-------	-----

(Space for a vector $u_4 \in V$, of the form $(u_4 = (0, 0, 0, 1, *, \dots, *))$; $1 := \text{"the pivot"}$.)

Feed v_1, \dots, v_n in order. To feed a non-zero v , find its pivotal position i .

1. If box i is empty, put v there.

2. If box i is occupied, find a combination v' of v and u_i that eliminates the pivot, and feed v' .

Non-Commutative Gaussian Elimination

Prepare a mostly-empty table,

$(1, 1)$						
$(1, 2)$	$(2, 2)$					
$(1, 3)$	$(2, 3)$	$(3, 3)$				
\vdots	\vdots	\vdots	(i, j)			
$(1, n)$	$(2, n)$	$(3, n)$	\dots	(n, n)		

Space for a $\sigma_{i,j} \in S_n$ of the form $(1, 2, \dots, i-2, i-1, j, *, \dots, *)$. So $\sigma_{i,j}$ fixes $1, \dots, i-1$, sends the pivot "i" to j and goes wild afterwards, and $\sigma_{i,j}^{-1}$ "does sticker j ".

Feed g_1, \dots, g_n in order. To feed a non-identity σ , find its pivotal position i and let $j := \sigma(i)$.

1. If box (i, j) is empty, put σ there.

2. If box (i, j) contains $\sigma_{i,j}$, feed $\sigma' := \sigma_{i,j}^{-1} \sigma$.

The Twist. When done, for every occupied (i, j) and (k, l) , feed $\sigma_{i,j} \sigma_{k,l}$. Repeat until the table stops changing.

Claim. The process stops in our lifetimes, after at most $O(n^6)$ operations. Call the resulting table T .

Claim. Anything fed in T is a monotone product in T :

f was fed $\Rightarrow f \in M_1 := \{\sigma_{i,j} \sigma_{2,j} \dots \sigma_{n,j_n} : \forall i, j_i \geq i \text{ and } \sigma_{i,j_i} \in T\}$

Homework Problem 1.

Can you do cosets?

Homework Problem 2.

Can you do categories (groupoids)?

The Results

In[3]:= (Feed[#]; Product[1 + Length[Select[Range[n], Head[s[i, #]] === p &]], {i, n}]) & /@ gs

Out[3]= {4, 16, 159993501696000, 2111914223872000, 43252003274489856000, 43252003274489856000}

<http://www.math.toronto.edu/~drorbn/Talks/Mathcamp-0907/> and links there

Problem Solved!

A Demo Program

In[2]:= (*RecursionLimit = 2*16;

2 := 54;

3 := P := p_P ** P[a___] := p[[a]];

4 := Inv[p_P] := P @@ Ordering[p];

5 := Feed[P_]:=Range[n]:= Null;

6 := Feed[p_P]:=Module[{i_, j_},

7 := For[i = 1, p[i] == i, ++i];

8 := j = p[i];

9 := If[Head[s[i_, j_]] === p,

10 := Feed[Inv[s[i_, j_]] ** p],

(* Else *) s[i_, j_] := p;

11 := Do[If[Head[s[i_, j_]] === p,

12 := Feed[s[i_, j_]] == Module[{k_, l_},

13 := Feed[s[i_, j_]] ** s[k_, l_];

14 := Feed[s[k_, l_]] == s[i_, j_];

15 := j_, {k_, l_, i_, n_}]

16 :=]];

17 :=];

18 :=];

19 :=];

20 :=];

21 :=];

22 :=];

23 :=];

24 :=];

25 :=];

26 :=];

27 :=];

28 :=];

29 :=];

30 :=];

31 :=];

32 :=];

33 :=];

34 :=];

35 :=];

36 :=];

37 :=];

38 :=];

39 :=];

40 :=];

41 :=];

42 :=];

43 :=];

44 :=];

45 :=];

46 :=];

47 :=];

48 :=];

49 :=];

50 :=];

51 :=];

52 :=];

53 :=];

54 :=];

55 :=];

56 :=];

57 :=];

58 :=];

59 :=];

60 :=];

61 :=];

62 :=];

63 :=];

64 :=];

65 :=];

66 :=];

67 :=];

68 :=];

69 :=];

70 :=];

71 :=];

72 :=];

73 :=];

74 :=];

75 :=];

76 :=];

77 :=];

78 :=];

79 :=];

80 :=];

81 :=];

82 :=];

83 :=];

84 :=];

85 :=];

86 :=];

87 :=];

88 :=];

89 :=];

90 :=];

91 :=];

92 :=];

93 :=];

94 :=];

95 :=];

96 :=];

97 :=];

98 :=];

99 :=];

100 :=];

101 :=];

102 :=];

103 :=];

104 :=];

105 :=];

106 :=];

107 :=];

108 :=];

109 :=];

110 :=];

111 :=];

112 :=];

113 :=];

114 :=];

115 :=];

116 :=];

117 :=];

118 :=];

119 :=];

120 :=];

121 :=];

122 :=];

123 :=];

124 :=];

125 :=];

126 :=];

127 :=];

128 :=];

129 :=];

130 :=];

131 :=];

132 :=];

133 :=];

134 :=];

135 :=];

136 :=];

137 :=];

138 :=];

139 :=];

140 :=];

141 :=];

142 :=];

143 :=];

144 :=];

145 :=];

146 :=];

147 :=];

148 :=];

149 :=];

150 :=];

151 :=];

152 :=];

153 :=];

154 :=];

155 :=];

156 :=];

157 :=];

158 :=];

159 :=];

160 :=];

161 :=];

162 :=];

163 :=];

164 :=];

165 :=];

166 :=];

167 :=];

168 :=];

169 :=];

170 :=];

171 :=];

172 :=];

173 :=];

174 :=];

175 :=];

176 :=];

177 :=];

178 :=];

179 :=];

180 :=];

181 :=];

182 :=];

183 :=];

184 :=];

185 :=];

186 :=];

187 :=];

188 :=];

189 :=];

190 :=];

191 :=];

192 :=];

193 :=];