

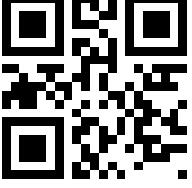
The Hardest Math I've Ever Really Used, 1

Abstract. We'll talk about How to Talk Mathematics, at least partially, by talking mathematics.

What's the hardest math I've ever used in real life? Me, myself, directly - not by using a cellphone or a GPS device that somebody else designed? And in "real life" — not while studying or teaching mathematics?

I use addition and subtraction daily, adding up bills or calculating change. I use percentages often, though mostly it is just "add 15 percents". I seldom use multiplication and division: when I buy in bulk, or when I need to know how many tiles I need to replace my kitchen floor. I've used powers twice in my life, doing calculations related to mortgages.

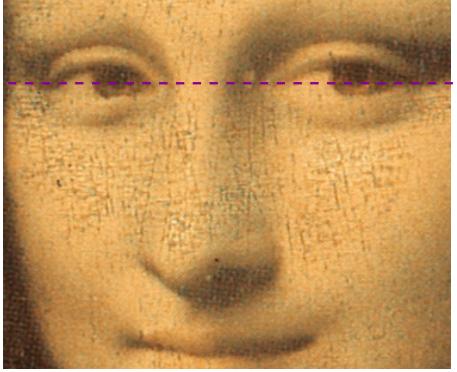
I've used a tiny bit of geometry and algebra for a tiny bit of non-math-related computer graphics I've played with. And for a long time, that was all. In my talk I will tell you how recently a math topic discovered only in the 1800s made a brief and modest appearance in my non-mathematical life. There are many books devoted to that topic and a lot of active research. Yet for all I know, nobody ever needed the actual formulas for such a simple reason before.



<http://drorbn.net/to26>

I could be a mathematician ...

...or an art historian...



...or an

environmentalist.

Al Gore in Futurama, circa 3000AD

Goal. Find the least-blur path to go from Mona's left eye to Mona's right eye in fixed time. Alternatively, fix your blur-tolerance, and find the fastest path to do the same. For fixed blur, our camera moves at a speed proportional to its distance from the image plane:

Small print on giving talks. • Lots of pictures! • Avoid slides! • Make a handout! The handout is the talk, not just beside the talk. • You must know your subject in and out. • Prepare! I almost never "write my talk the night before", and often start weeks or months in advance. • Your talk must tell an interesting story. Choose your research so that it would.

Dror Bar-Natan: Talks

Mathcamp-0907:

The Problem. Let $G = \langle g_1, \dots, g_n \rangle$ be a subgroup of S_n , with $n = O(100)$. Before you die, understand G :

1. Compute $|G|$.
2. Given $\sigma \in S_n$, decide if $\sigma \in G$.
3. Write a $\sigma \in G$ in terms of g_1, \dots, g_n .
4. Produce random elements of G .

The Commutative Analog. Let $V = \text{span}(v_1, \dots, v_n)$ be a subspace of \mathbb{R}^n . Before you die, understand V .

Solution: Gaussian Elimination. Prepare an empty table,

1	2	3	4	...	$n-1$	n
---	---	---	---	-----	-------	-----

Space for a vector $u_4 \in V$, of the form $u_4 = (1, 0, 0, 1, *, \dots, *)$: $1 :=$ "the pivot"

Feed v_1, \dots, v_n in order. To feed a non-zero v , find its pivotal position i .

1. If box i is empty, put v there.
2. If box i is occupied, find a combination v' of v and u_i that eliminates the pivot, and feed v' .

Non-Commutative Gaussian Elimination

Prepare a mostly-empty table,

(1, 1)	$\sigma_{1,1}$
(1, 2)	(2, 2)
\vdots	\vdots
(1, n)	(n , n)

Space for a $\sigma_{i,j} \in S_n$ of the form $(1, 2, \dots, i-2, i-1, j, *, \dots, *)$

So $\sigma_{i,j}$ fixes $1, \dots, i-1$,

sends "the pivot" i to j and goes wild afterwards, and $\sigma_{i,j}^{-1}$ "does sticker j ".

Feed g_1, \dots, g_n in order. To feed a non-identity σ , find its pivotal position i and let $j := \sigma(i)$.

1. If box (i, j) is empty, put σ there.
2. If box (i, j) contains $\sigma_{i,j}$, feed $\sigma' := \sigma_{i,j}^{-1}$.

The Twist. When done, for every occupied (i, j) and (k, l) , feed $\sigma_{i,j} \sigma_{k,l}$. Repeat until the table stops changing.

Claim. The process stops in our lifetimes, after at most $O(n^6)$ operations. Call the resulting table T .

Claim. Anything fed in T is a monotone product in T :

f was fed $\Rightarrow f \in M_1 := \{\sigma_{1,j_1} \sigma_{2,j_2} \dots \sigma_{n,j_n} : \forall i, j_i \geq i \text{ & } \sigma_{i,j_i} \in T\}$

Homework Problem 1. Homework Problem 2.

Can you do cosets?

www.powerpuzzles.net/puzzles/

Can you do categories (groupoids)?

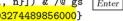
www.powerpuzzles.net/puzzles/

The Results

In[3]:= (Feed[#]; Product[1 + Length[Select[Range[n], Head[s[i, #]] == #4], {i, n}]) & /@ gs
Out[3]:= {4, 16, 15999351696000, 21119142223872000, 4325003274489856000, 4325003274489856000}

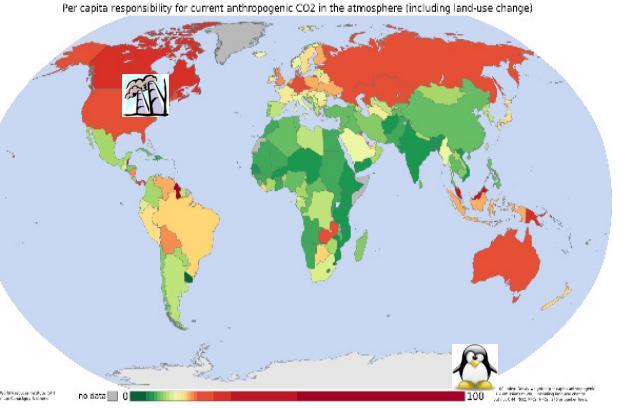
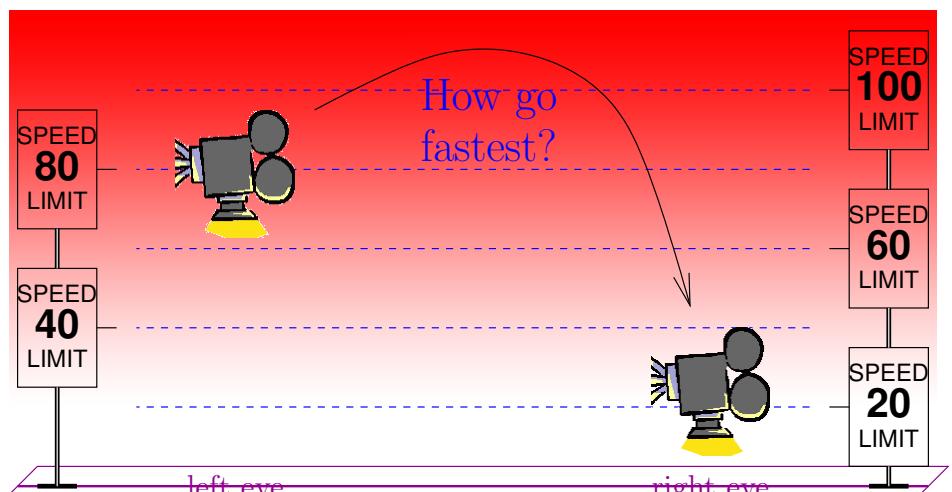
<http://www.math.toronto.edu/~drorbn/Talks/Mathcamp-0907/> and links there

www.powerpuzzles.net/puzzles/

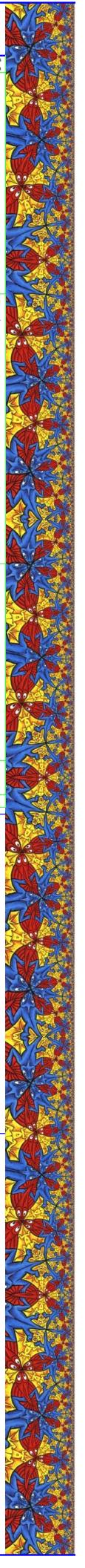


www.powerpuzzles.net/puzzles/

www.powerpuzzles.net/puzzles/

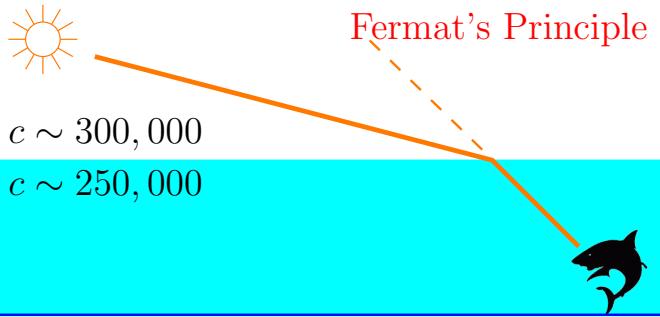


The Mona Plane



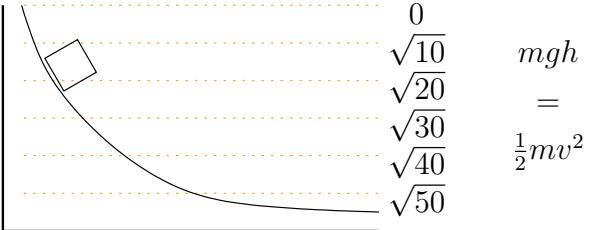
The Hardest Math I've Ever Really Used, 2

Picture credits. Mona: Leonrado; Al Gore: Futurama; Map 1: en.wikipedia.org/wiki/Greenhouse_gas; Smokestacks: gbuapcd.org/complaint.htm; Penguin: brentpabst.com/bp/2007/12/15/BrentGoesPenguin.aspx; Map 2: flightpedia.org; Segway: co2calculator.wordpress.com/2008/10; Lobachevsky: en.wikipedia.org/wiki/Nikolai_Lobachevsky; Eschers: www.josleys.com/show_gallery.php?galid=325;



Fermat's Principle

The Brachistochrone



Bernoulli on Newton. "I recognize the lion by his paw".

Flatlanders airline route map

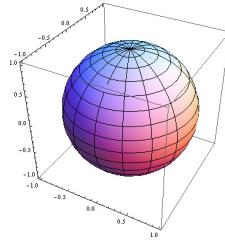
576
252
167
131
112
103
100
103
112

The Least Action Principle. Everywhere in physics, a system goes from A to B along the path of least action.

With small print for quantum mechanics.

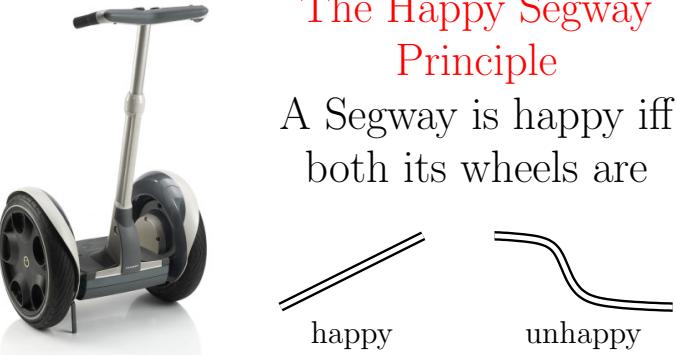
ParametricPlot3D[{

```
  Sin[u] Cos[v],
  Sin[u] Sin[v],
  Cos[u]
}, {u, 0, \pi}, {v, 0, 2 \pi}]
```

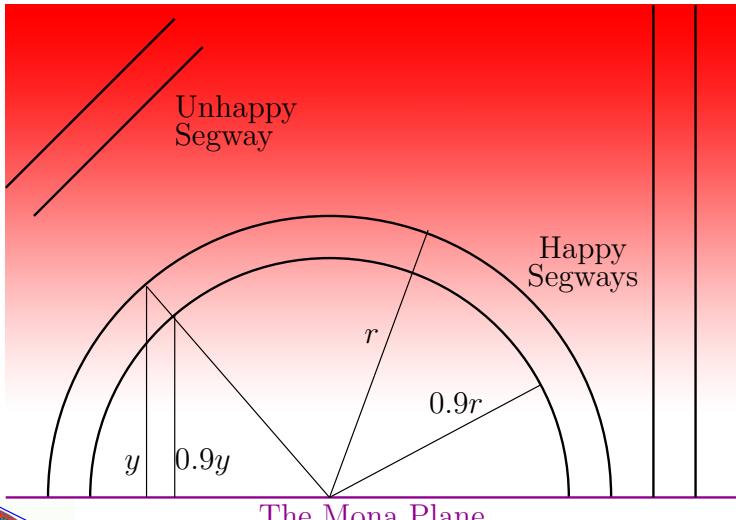


The Happy Segway Principle

A Segway is happy iff both its wheels are

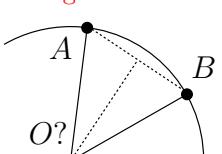


Happy camera-carrying Segways above the Mona Plane

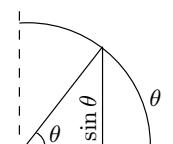


Some further basic geometry also occurs:

Finding the Centre



Parametrization



$$\theta'(t) = \sin \theta(t)$$

$$\Downarrow$$

$$\theta = 2 \arctan e^t$$

The Actual Code

```
p3.y = p2.y + b*x3p;
x = p1.x-p2.x; y = p1.y-p2.y;
d1 = p1.d; d2 = p2.d;
norm = sqrt(x*x + y*y);
a = x/norm; b = y/norm;
x1p = a*x + b*y;
x0 = (x1p + (d1*d1-d2*d2)/x1p)/2;
r = sqrt((x1p-x0)*(x1p-x0)+d1*d1);
x1pp = (x1p-x0)/r; x2pp = -x0/r;
theta1 = acos(x1pp);
theta2 = acos(x2pp);
t1 = log(tan(theta1/2));
t2 = log(tan(theta2/2));
t3 = t1 + s*(t2-t1);
theta3 = 2*atan(exp(t3));
x3pp = cos(theta3);
d3pp = sin(theta3);
x3p = x0 + r*x3pp;
p3.d = r*d3pp;
p3.x = p2.x + a*x3p;
```

Ops used. +, -, ×, ÷, $\sqrt{}$, cos, sin, tan, arccos, arctan, log, exp.

