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OMG, thanks! [E]Ei[=]

lStrong. ® vs. a slew of other reasonably-computable invariants|
(deficits shown):

Let T; and T, be new indeteminates, let 75 = 7175, and let G, =
gvap) be GWithT — T, forv=1,2,3.

s : . n <10 | <11 <12 <13 <14 <15
Apstract. riu start‘ ‘w1th a review of my regent paper T 249 | 801 | 2977 | 12965 | 39937 | 31330
with van der Veen, “A Fast, Strong, Topologically Me- A (38) | (250) | (1,204) | (7.326) | (39.741) | (236,326)
aningful, and Fun Knot Invariant” [BV3], and then as- oLr (108) | (356) | (1,525) | (7,736) | (40,101) | (230,592)
sign some homework. Much of what I'll say follows KJh 8 g(s); Eﬁg 8‘2‘;‘6‘; gé?ggi 833223
earlier yvork by Rozansky, Kricker, Garoufalidis, and i o T 6h T a0 (1:839) (11:251) (73’;;92)
Ohtsuki [ROI, Ro2, Ro4, Kr, GR, Oh2] van der Veen Vol (~6) | (~25) | (~113) | (~1,012) | (~6,353) | (~43,607)
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A. With T an indeterminate, start from a presentation matrix A (A, p1,p2) © | a4 | ¢4 (O11) | (5,926) | (41,469)
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for th§ Alexander moc‘lule of K, coming from the Wirtinger pre 5 o T ® o) @5 @i | 6759
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0O 0 0 0 0 0 1 A = det(A) Topologically Meaningful. 6 is near A and we dream that anyth-
G. Let G = (gop) = A" ) ing ‘A can do, 6 doles too (sometlm.es better). Thﬁ: fo.llowmg two
| T 1 T | T | . conjectures are verified for knots with < 13 crossings:
| T T - @ Conjecture 1. degy, 0(K) < 2g(K).
0 1 TErE TR TRIR TR 1 @eB/Pi (Conjecture 2. If K is a fibered knot and d is the degree of A(K)
0 0 Tzl_—TT ] Tz_lT+l T2_1T+1 Tz_TTH 1 the highest power of T'), then the coefficient of ng in 8(K), which
G=10 0 5w Tffzfr) T RS EUR £ 1 is a polynomial in 7', is an integer multiple of T{A(K)|7-1, .
0 0 == -5 Fs == e |1 Dream. 6 has something to say about ribbon knots
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o+ (T3 -2) gy (T3-1) (T3+1) a1 /

(75-1) gaye (1- T3 820
(12-1))]
F2[{s0_, 16_, jO_}, {s1_, i1_, j1_}] :=
CF[s1 (13 -1) (13 -1) 7" (13" -1) &a,51,10 85,50, 12
(75" B2si2,10 - B2,11,50) = (T3 B2,30,10 - B2,50,50) ) ]

Falo, k1=08sk-0/2;

=T1T5
kFIo] :=
BIK_] :=0[K] = Mndule[(x, 0

Program

5 0, k, k1, k2},

ExpandeCollect[5, g_, F] /. F - Factor;
n, A, A, G, ev.
{X, 0} =Rot[K]; n=Length[X]; A = IdentityMatrix[2n+1];
cases[x, (5., i 3o (DL ), ety genines (70T 1Y) 5
o 7RSS TR 1 2 e ]

G = Inverse[A];

ev[& ] :=Factor[5 /. 8, .5 » (Gla, A1 /. T>T,)1;

0= evISUR[F [XIKIL, (K, )15

0 +=eviSun(F; XIAL, XEK2D1, (KL, ), (K2, 1115

0 4= evISUNLFs 0IKL, K1, (K, Lengtheo)11;

Factore{s, (A /.T>Ty) (4/.T>Ty) (A/.T>Ts) 6}

[DHOEBL]. For most inva
riants, 300 is science fiction.

A random 300 xing knot from
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(many more at wef3/TK) Random knots from [DHOEBL] with 51
— 75 crossings: (many more at we3/DK)

The 132-crossing torus knot 7;,7:

G0 o HHH Ittt B H B D B D
A R R RIRIRT TRIRTE T T )
000 0 @ H IR H B S D D O
T H BB ORNHINATATIA AR BB E S WY
AL RO WARITATATR BB B S LY
LA ERLRWMNVVEVEVE N BHHDODD LYY
TR ELEBRNRREVRNDBDDDIDE B LT
o d PR RaEENRINHRBBHDDDBIEDH B T Y
PR i g Lo nds s an okt SRR R A T T T A A

w s e adadRFFEEFFHRBNDDDRDDES % %%
R R T AT A e AT AN R NN T e
CESEEE R E R B AIBOBDDBD % % % %,
R @1'&&.95? T OO
PRFIN VaTATAYATAYAYA XL YA %% %
el 0%%#@’3‘99 Aulli\-"! ¥ “’:z @eieﬁ %%

T ATAARAYAY LT
A g}( 3
Sl

R R ittty Y Y Y T Y

R R R R R R R R R
228U RANMNMMINNNNEBDE O8O0

D00 MWW AR M B W D 0 ] | AN
GO0 WM IIIRIIII M R H B D DD
G40 MR IEIEEE M B M B B D

Moral. We must come to terms with @!

(8ap) = A~" in terms of g(K), and that’s probably enough.

Task 1. Make the “data” formulas human friendly.

Task 2. Prove the hexagonal symmetry of (K), and that 6(K) =
6(-K) = —6(K).

That’s harder than it seems! The formulas don’t naively show
any of that. A has a palindromic symmetry first conjectured in
Alexander’s original paper [Al] — it is invariant under 7 — T~!.
Proving this took a few years, and the proof starting from the
Wirtinger presentation is quite involved (e.g. [CF, Chapter IX]).

Task 3. Show that 6 dominates the Rozansky-Overbay invariant
p1 [Rol, Ro2, Ro4, Ov, BVI]. Precisely, show that pi =
=0l7, 1,151

This one should be easy with techniques from [BV3, Section 4.2].

Task 4. Explain the “Chladni patterns”. Are there “dominant
parts” of 6 that can be computed in isolation?

left: © Whipple Museum of the History of Science,
University of Cambridge; right: CC-BY-SA 4.0 / W-
ikimedia / Matemateca (IME USP) / Rodrigo Tetsuo
Argenton

Task 6. Find a 3D interpretation of the g.g’s.
They must be closely related to the equivariant linking numbers
of [KY, GK, GT, Oh3, Lel].

Task 7. Find a formula ¥ for ©(K) that starts from a Seifert sur-
face T of K. Better if ¥ is completely 3D! Assuming Task 13, it is
known that ® depends only of invariants of type < 3 of . May-
be F is about configuration space integrals / chopstick towers?
See CS: [Th, Le2, BN1], BF: [CR, BN2]
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Task 8. Is there an intrinsic theory of finite type invariants for
Seifert surfaces? For task 11, does its gr map to functions on Hy?
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* * count
-7 with

(g

s 3/
Mp g
I
s
N
N
degree = #(rattles)

My current best understanding of finite type i-
nvariants for Seifert surfaces goes through thick
graphs.

Task 5. Prove the genus bound of Conjecture 1.

This is probably coming. One can bound the degree of A = det(A)
in terms of g(K) using the Seifert presentation of the Alexan-
der module. Pushing further, likely one can bound the degree of

Task 9. Prove the the fibered condition of Conjecture 2.

If K is fibered, deg A(K) = g(K) and A(K) is monic. Indeed,
K is then the mapping cylinder of a diffeomorphism f: ¥ — X.
The Alexander module of K is generated by H{(Z) with relations
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{ly = Tfoy: y € Hi(2)}. Thus the highest monomial in A is
T8 det(f.) and det(f.) = x1 as f. preserves the intersection pai-
ring. If only we had a formula for 6 in terms of f...

Task 10. In general, find a formula for ® corresponding to each
known presentation of the Alexander module.

Wirtinger is 2{xings} — {edges}. Dehn is {xings} — {faces}.
Co-Dehn is {faces} — {xings}. Burau is {braid strands} —
{braid strands}. Seifert is H{(¥) — H(¥), and so is the pre-
sentation from Task 9. Grid diagrams lead to {grid number} —
{grid number} (may relate to HFK). There’s more!

Task 11. Write up the integration story.

Claim (e.g., [BN4]). Cutting corners, with € = 0,

1 0 f
exp|e- ~
A1AzA3 p( A1A2A3) M. R

where f denotes perturbed formal Gaussian integration (i.e.,
“Feynman Diagrams”) and L. is

1+

¢ "le P2e:P3e*1e*2e"3e €

L[X; ,; [5_11 :=Plus|
Z‘zﬂ (Xvi (Pvi* = Pvi) +Xvj (Pvj* = Pvj) + (Ti = 1) Xyi (Pvi*
(Ti = 1) P3j X1i (T§ Xai = ij) >
€5 (T5-1) p1j (Pai - P2j) Xa:/ (T3-1),
s (1 /2 +T5 P1i P2j X1i X2i - P1i P2j Xai X25 — P3i X3i = (TZ = 1) P2; P3i X2i X3i +
(T; - 1) P25 P3j X2i Xai + 2 P2;j P3i X25 X3i + P1i P35 X1i X35 = P2i P35 X2i X35 =
T5 P2 P35 X2i X35 +
((T1-12) pyjxai (Tgs P2j X2i - T; P2j X2j -
T; P3j Xs;) + (T3 - 1) psj Xa
(1 - T5 pai Xai + Pai Xo5 + (T3 -2) PajX25)) / (T3-1)) ]

_pvj")).v

(T3+1) (T3-1) psjxsi +

In fact, we first found L. using the method of undetermined coeff-
ficients, and then derived F; and F» from it.

Task 12. Find a similar perturbed Gaussian integral formula for
6, but with integration over 6H|(X). The quadratic Q will be the
same as in the Seifert-Alexander formula (but repeated 3 times,
for each T,). The perturbation P will be given by low-degiee
finite type invariants of curves on X (possibly also dependent on
the intersection points of such curves, or on other information
coming from X).

> T fop oN %

Task 13. Prove that 0 is equal to the two-loop contribution 297(
to the Kontsevich integral Z.

Composed with the inverse PBW isomorphism )(‘1, y ' oZta-
kes values in unitrivalent Jacobi diagrams, 8 = {Xo...}/IHX.
Rozansky con]ectured [Ro3, GR] and Kricker proved Kr] that

higher
log(y ! OZ)_fl * loops,
where _ B! = | | , fi € Q[f], and
£ € Qln.nl saisfy fi = %log e and =

ZA(e", e?) [A(e)A@M)A(@*?) where ZP € Z[TE, T is
the “two loop polynomial”. Ohtsuki [Oh2] studied Z? extensi-
vely, and almost certainly, 7@ = 9. Prove that!

Task 14. Complete and write up the g} story.

Let g be a semisimple Lie algebra, let I be its Cartan subalgebra,
and let b* and b’ be its upper and lower Borel subalgebras. Then
b" has a bracket 8, and as the dual of b’ it also has a cobracket &,
and in fact, g ® h = Double(b*, 3, 6). Let g} := Double(b", B3, €5)
(mod e®*! it is solvable for any d). We expect that @ is the uni-
versal invariant (in the sense of Lawrence and Ohtsuki [La, Oh1])
corresponding to sl+’6, computed modulo € (in fact, that’s how
we guessed it). See [BN3, BV2].

Task 15. Go beyond slz and the first power of €!

This sounds very appealing, and you will indeed get stronger and
stronger invariants. But they will become less and less computa-
ble ®.

Task 16. Relate the g} story with (rotational) virtual knots
[Kau], with A [Po], and with quantization of Lie bialgebras

[EKI, EK2, En Se]
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Task 17. Fmd a Mtyle charcterization of ©.
A

A wad T @/2 %
Compare with (say) [BD], Where Ais charcterlzecﬂ onw \/ s by

the overcrossings / tails commute relation. Si lar}?‘rrgrould
be possible to charactize ® on rotational virtual/knots by some
“overcrossing@ls nearly commute” relation.

L)

Task 18. Understand Chern-Simons theory with gauge group g7 .

Is there a gauge that leads to the formula ¥ of Task 7?

Task 19. What happens to representation theory as € — 07 Is
there any fun in continuous morphisms g — gl .?

Task 20. Does O extend to knots in ZI—@S ?
(|

A

Z and Z® do.

Task 21. Is there a surgery formula for ®?



Z and Z® have.

Task 22. Extend O to tangles and figure out how it behaves un-
der strand doubling.

Z and Z® extend but their extensions depend on parenthesiza-
tions. From Task 14 we expect that ® will extend without the
need for parenthesizations, yet with an asymmetry built into the

~> doubling operations.

Task 23. Make Kricker / Ohtsuki [Kr, Oh2] more computable!

Task 24. Find a multi-variable version of 0 for links, like there is
It is predicted g} consideration, but not by the loop expansion.
Task 25. Find a ribbon condition satisfied by ©.

one may find a Sei-

fert surface X half of

generated by the components of an unlink embedded in . Th-
is makes for a presentation matrix A of the Alexander module of
condition [FM], A = det(A) = f(T)f(T~") for some f € Z[T*'].
If det A is constrained for ribbon knots, perhaps so is A~! and

a multi-variable Alexander for links (e.g. [Kaw, Chapter 7]).
For a ribbon knot K, l ’ u
whose homology is

K that has big blocks of zeros, and this leads to the Fox-Milnor
therefore ®?

Bonus Task. Carthago delenda est and e-
very knot polynomial must be categorified.

M. Khovanov & Cato the Elder
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FIGURE 1.1. © as a bar code and a QR code, for all the knots in the Rolfsen table.
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FIGURE 1.2. © of some square weave knots, as computed by [BV3, WeaveKnots nb].
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FIGURE 1.3. © of a randomized weave knot, as computed by [BV3, WeaveKnots.nb),
Crossings were chosen to be positive or negative with equal probabilties.

2. THE Ma THEOREM

We start with the definition of ©. Given an oriented 5-
crossing knot K, we draw it in the plane as a long knot di-
agram D in such a way that the two strands intersecting at
each crossing are pointing up (that's always possible because
we can always rotate crossings as nceded), and so that at its
beginning and at its end the knot is oriented upward. We call
ch a diagram an upright knot diagram. An example of an
ight knot diagram is shown on the right

Tabel each edge of the diagram with two labels: a
running index k which runs from 1 to 20 + 1, and a “rotation
mmber” i the geometric rotation number of that edge’. In

FIGURE 2.1. An example
upright knot diagram

"The s mumber of tmes the tangent 0 the o s hoizontal e heading i, with cups counted
with +1 signs and caps with 1 e s well defined because at their ends, all edges are headed up.

FIGURE 1.4. § (hexagonal QR code only) of the 15 largest knots that we have com-
puted by September 16, 2024. They are all “generic” in as much as we know, and
they all have > 300 crossings. The knots come from [DHOEBL]. Warning: Some
Screensprinters may introduce spurious Moiré interference patterns,

Figure 2.1 the running index runs hom 1107, and the rotation mumbers for all edges are 0
(and Iwuu‘ are omitted) except for s, which
e the set of all crossings in the diagram D, where we encode each crossi
riple (sign of the rosing incoming over edge, incoming under edge). Tn our example we
have X = {(1,1,4) 2),(1,3,6)}
Welet A b the (2n 1)  (3n-+ 1) matex of Laurent. polynomials n o variable 7, defied
by

A=1- (T*Euiss + (1 - T)E,
c-iliex

1+ Ej)

\nhcxr Iis the idey
3 and zeros

ity matrix and E,; denotes the clementary matrix with 1 in row a and
where.

Alternatively, A = I+, A., where A, is a matrix of zeros except for the blocks as follows:

;u%l +|/\)j+|

s=+1 s

We note that the determinant of A is cqual up o a nit to the normalized Alexander
polynomial A of K7 In fact, we have that

A= A(K) = I=wlDN2 det(A), (2)
where (D) == S, ¢ is the total rotation number of D and where w(D) = X5, is the
writhe of D, xmmel\ the sum of the signs 5. of all the cross

We let G = (ga3) = A", and, thinking of it as a function gos of a pair of edges a and
5, we call it the Green unction of the digram D When mpum by physics (e.5. Fact 33
and [BNG]) we someti mc Zpoint function”, and w ing of car traffic (e.g,
Comment 3 and [BV 1) we s call it n.» i ﬁ.m.m. As an example,
cre e A s G for the kuot diagsam D of Figure 2

1T 0 0T-10 0 T T 1
01 -1 0 0 0 0 01 rtey ke e g !
00 1 -T 0 o d T 1
00 0 1 10 0 1
ooT-10 1 -T 0 1
0o 0 0 0 o1 - 1
00 0 0 0 0 1 1

Let Ty and T be indeterminates and let Let A,

Irz aud Gy = (9uas) =

Glr_, be & and G subject to the substitution 7~ T,, where v = 1,23
Given crossings ¢ = (s.i.j), co = (So.i0. jo), and ¢; = (51,41, j1) in X and an edge label k,
et
= s[1/2 = gsi + T1a0ss — T332 — (T3 — Vgsagnss 3)
HT5 = )20 = 91695 + 2006925 + Dy — Fadsss]
+ g (T3 = VT3 (959155 — gasigns + T9igse)
T
(T35 = Vs (1= Tigui + 925 + (T = 2)gas; — (17 = DT + D))
sy = )73 — 1 Sivis (sa. 0,
Fi(eo.e) = W02 = Dt (g0, 4 g3~ Ttgs —oms) @)

Fy(8) = (osse ~ /20

These formulas are uninspiring, yet they are easy to compute (given G), and they work:

?The informed reader will note that A is a presentation matrix for the Alexander module of
by using Fox caleulus on the Wictinger presentation of the fundamental group of the complen

. obtained
of K

Theorem 1 (The Main Theorem, proof in Section 4). The following are knot invariants:
=Y R+ Y Flwa)+ Y, Fi(k) and 6(D) = AA:s60(D).  (6)

Furthermore, 0 is a Laurent polynomial in Ty and Ty, with integer coefficients.

Some comments are now in order.

Comment 2. The entries of G, are rational functions with denominators A, and so f is
valued in the ring of rational functions Q(T;, T3). The point of 8 is to clear these denomi-
nators b\ multiplying by 414245 50 as to get an invariant valued in Laurent polynomials
(T ains a_potential denominator of the form (T; — 1) coming from the explicit
denominators in Eaations (3) and (1). 1t will be shown to cancel i Scction 2

Comment 3. We note following [BV1] that g, can be imclprcmd as mcasuring “ear traffic”,
assuming a stream of traffic is injected near the start of edge raffic conter” is
Pl near the end of dge 5 andl where cars abways obey the ollowing ralfic e

o Car travel on mv edges of the knot, always in a direction consistent with the orientation
of these

When o ca eaches a crossing on the under-strand,
the other side.

© When a car reaches a crossing of sign s = 1 on the over-strand, it continues right through
with probability T, yet with probability 1 — T it falls down and continues travelling on
the lower strand. (It matters not that T and T~ cannot be between 0 and 1 at the
same time — we merely use the algebraic rules of probability without caring about the
inequalities that normally come with them)
When cars reach the of the knot, the abyss that follows edge 2n + 1. they
the picture never to be seen again.

These rules can be summarized by the following pictures:

= U H WY

For further details, see [BV1]

t travels through and continues on

all off

a

BalE
Gl

Comment 4. We note without detail that there is an alternative formula for @ in terms of
tifs of

perturbed Gaussian integration [BNG]. In that language, and using also the traffic m
D 3, the three summands in (6) become Feynman diagrams for processes in whic
cars @, governed by parameter T, = T;, Ty, or Ty interact

In particular, the
its name.

middle diagram which resembles the Greek letter © gave the invariant

Comment 5. The computation of G i a borttlenedk for the computation of ©. It requires
inverting a (2n + 1) x (20 + 1) matrix whose entries gree 1) Laurent polynomials in
s dounting took set i taken polymornil i, Even o naive nvcrsion b Gaussian
elimination requires only ~ 1 operations in the ring So G can be computed in
actice even if n is in the hundreds, and everything which then follows is not worse.

The polynomials Fi(e), Fa(eo, c1) and Fy(k) are not unique, and we are not certain that
we have the cleanest possible formulas for them. They are ugly from a human perspective,
et from a computational perspective, having 18 terms (as is the case for F(c)) isn't really
a problem; computers don’t car

Computationally, the worst term in (6) is the middle one, and even it takes merely ~ n’
operations in the ring Q(T;, Ty) to evaluate.

3. IMPLEMENTATION AND EXAMPLES

3.1. Implementation. A concise yet reasonably efficient implementation is worth a thou-
sand formulas. It completely removes ambiguities, it tests the theories, and it allows for
experimentation. T next task is to implement. The section that follows was gener-
ated from a Mathematica [Wo] notebook which is available at [BV3, Thetaub]. A second
implementation of ©, using Python and SageMath (https://usw. sagenath. org/) is avail-
able at https: //ww. rolandvdy.nl/Thet:

We start by loading the package KnotTheory*

it is only needed because it has many

and & mean “buman inpu

specific knots pre-defined. Tn this Section and in the next.

white BB means “computer output”

, 10:29:52.1301.

once<c KnotTheory™] [ Losting KnotTheory” version of October 29, 20

Read more at hetp: //katlas.org wiki KnotTheory.
Yest we il dofine the modles R, s t compterotation e, and PolyPlot,
used to plot polynomials as bar codes and as hexagonal Q) Neither is a part of the
core of the comprtation of © so aeithr i shown: set wo do show ome weage example for

=

& (= The definitions of Rot and PolyPlot are suppressed »

Rot [MirroreKnot[3, 1] 1,1,4), (1,3,6), (1,5, 2}, (8,0,0, -

L8890

We urge the reader to compare the above output with the knot diagram in Figure 2.1.

wh

@ PolyPlot[(2T-14T%, -10Ti-2T; 8T}
Tnagesize -+ 100, Labeled - True]

The definition of CE below is a technicality telling the computer how to best store poly-
nomials in the g,qs’s such as F; and F. The programs would run just the same without it,
albeit a bit more slowly:

(@ CFI2) = Expandecollect (s, g_, F] /. F -+ Factor;

Next, we decree that T; = TT; and define the three “Feynman Diagram” polynomials Fy,
Fy, and Fy

@nenn
Ral(s, i, 5] 3= CF
5 (172 B T3 B By - B By -
B2t 8357 = T3 Bayi Basy + Baci oy +
((75-2) 8ase (73" Basi - T3 8ass + Tiss) +
(15-2) By (1-Tigace + B2y + (T3 -2) B2y =
Fal{se_, i0_, je_), {s1_, i1_, j1_}
(F[s] (1e=1) (15°-1) (157-1) .,,,A 08,50,
(o

Bacn0) = (15 825,00 = Basn,0) )|
@ Fales, k) =0Bm-0/2;

xt comes the main program computing ©(K). Fortunately, it matches perfectly with
the mathematical description in Section 2. In line 1 below we use Rot to let X and  be
the crossings and rotation mumbers of K. In addition we let n be the length of X, namely
the number of crossings in K., and we let the starting value of A be the (2n +1) x (20 +1)
Klomnv matrix. Then in Iluc 2, for each crossing in X we add to A a 2 x 2 block, in rows

nd j + 1, as explain in Equation (1). In line 3 we compute the
ormalised Alesander polynonial & a i (3. I lne 4 we et G be the iveree of 4. I ine
o declare what it means to evaluate, ev, a formula € that may contain symbols of the
Guas each such symbol is to be replaced by the entry 3 of G, but with
r replaced with T,.. In line 6 we start computing 6 by computing the first summand in (6),
which in itself, is a sum over the crossings of the knot. In line 7 we add to 6 the double sum
corresponding to the second term in (6), and in line 8, we add the third summand of (6]
Finally, line 9 outputs a pair: A, and the re-normalized version of 0.

(T3-2) asi Bais + 28355 8301 - (1-T3) Base B -

(13-2) (1) 815)) / (13-2))]

1.1 =010 = Rodule 5, 05, 8, 5 G, e, 8, K, kL k),
%, #) = Rot K13 1 = Length(X]; A= IdentityMatrix[2n+1];
€ases[X, (5., 1, J) o (MGG, ), o3, Jem s (7715
5 =TT ToI AL 2 peg )5

- 6= Tnverse(A];

<) evia ) i Factor(s /..,
0= eviSunEy (X1, (6, M1

+) 0 vn evISmIF X, XK1, (kL ), (2, M1
< 0 em evisumlFs [o0KD, K1, (K Lengthes)]];

<) Factore (s, (/. T=T) (4 /- T+Ta) (/. T+T5) 6}

= (GLas A1 /- T+T)15

3.2. Examples. On to examples! Starting with the trefoil knot.

(@ expandiofknot (3, 111

=i
g

(@) Polyplot(s[knot (3, 111, Inagesize = Tiny]

Next are the Conway knot 11,5 and the Kinoshita-Terasaka
Knot ygz. The two are mutants and famously hard to separate:
they both have A = 1 (as evidenced by their one-bar Alexa
der bar codes below), and they have the same hyperbolic volume,
HOMFLY-PT polynomial, and Khovanov homology. Yet th
invariants are different.
Kinoshita-Terasaka knot is 2. This agrees with the apparent higher complexity of the Q)
code of the Conway polynomial and with Conjecture 1 below.

@nlyvlu([s[lmtlt]l Tnagestze 1201870 B _ I
2

10347, *K1ln

2\
QO

ote that the genus of the Conway knot is 3, while the genus of the
R

P
v
wce

Torus knots have particularly nice-looking © invariants. Here are the torus knots Ty o
Tz, Ty, and Tt

D Torusknot 6@ =],
Tubeplot Torusknot 00 7, Iaagesize + 240), (Right, Bottom), (Right, Bottom)] 8 /0
({13, 2), (17, 3), (13, 5), (7, 6)) // GraphicsRow

R
The next line shows the computation time in seconds for the 132-crossing torus knot Tz, .
on a 2024 laptop, without actually showing the output. The output plot is in Figure 3.

& AbsoluteTiming (e [Torusknot (22, 71151

B o7,

We note that if 7} and 7; are assigned specific rational numbers and if the program for © is
slightly modified so as to compute each G, separately (rather than computing G symbolically
and then substituting T — 7., then the program becomes significantly more efficient, for
inverting a numerical matrix is cheaper than inverting a symbolic matrix (but then one
numerical answers and the beauty and the topological significance (Section 5) are
lost). The Mathematica notebook that accompanies this paper, [BV3, Theta.nb], contains
the required modified program as well as a few computational examples. One finds that with
Ty = 22/7 and T, = 21/13, the invariant © can be computed for knots with 600 crossings
and that for knots with up to 15 crossings, its separation power remains the same.

I 7y and T, are assigned approximate real values, say = aud  computed to 1o decimal
it then © can be computed on Knots with 1,000 and, for knots with up to 15
Crossngs it remains vory strong, But approximate rel mbers are a bit mom\ It is hard
to know how far one needs to compute before deciding that two such numbers are equal,
and when two such numbers appear unequal, it is hard to tell if that is merely because they
were computed differently and different roundings were applied. Thorns and snares are in
the way of the perverse: He who guards his soul will be far from them (Proverbs 22:5)".

4. PROOF OF THE MAIN THEOREM, THEOREM 1

We divide the proof into to parts: the i of 8 (and therefore of ) is in Section 4.1,
the polynomiality of 6 i

1.1. Proof of Invariance. Our proof of the invariance of  (Theo milar
and uscs many of the same pioces, o the proot of the inariance of i in [BV1]. Thus a
here we are briefer than at [BV1], and sadly, vet in the interest of saving space,
St b the nterpretation of g5 0 rafie fnction

Some Reidemeister moves create or lose an edge and to avoid the need for renumbering
it is beneficial to also allow labelling the edges with non-consecutive labels. Hence we allow
that, and write i* for the successor of the label i along the knot, and ¢ for the successor of

T o wm ww

() TnageCompose [PolyPlot (8 [Torusknot [22, 711, TnageSize 7261,
TubePlot [Torusknot [22, 7], Tnagesize - 369] , (Right, Bottom), (Right, Bottom)]

e
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e
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FIGURE 3.1. The 132-crossing torus knot Tz 7 and a plot of its © invariant

* (these are i +1 and i + 2 if the labelling is by consecutive integers). Also,
< refr to the abel of the frt cdge, and 31 + 1" will avays efer 1 he label
of the last. With this in mind, we have that A = I + 3}, A, with A, given by

i \/ s

-4 -1

Like in [BV1, Lemma 3], the equalities AG = I and GA
= (s.i,j) in a knot diagram D, the Green function G =

ies the following

“g-rules”, with 6 denoting the Kronecker delta:
®)
it = T"00i + 0asts  Gajs = oy + (1= T)gas + 8y, )

Furthermore, the systems of equations (8) is equivalent to AG = I and so it fully determines
s, and likewise for the 1 (9), which is equivalent to GA

Of course, the same g-rules also hold for Gy, = (guas) for v = 1,2,3, except with 7 replaced
with T,

We also need a variant g of gas, defined whenever a and b are two distinet points on the
edges of a knot diagram D, away from the crossings. If a is the edge on which a lies and 7
is the edge on which b lies, G is defined as follows:

9is =0+ T s+ (1=T)gjo50 Gip=8ip+ 953 Gansrs = e

ot = Bt

ifa# 3,
ifa

5 and a < b relative to the orientation of the edge o (10)

3 and a > b relative to the orientation of the edge o

ifa

Of course, we can define g from g, in a similar way.

It is clear that g and § contain the same information and are easily computable from each
other. The variant  is, strictly speaking, not a matrix and so ¢ is a bit more suitable for
computations. Yet 7 is a bit better behaved when we try to track, as below, the changes in g
and § under Reidemeister moves. Reidemeister moves sometimes merge two edges into one
or break an edge into two. In such cases the points a and b can be “pulled” along with the
move 50 as to retain their ordering along the overall parametrization of the knot, yet mere
edge labels lose this information. From the perspective of traffic functions, g is somewhat
more natural than g, as it makes sense o inject traffic and to count traffic anywhere along
an edge, provided the injection point and the counting point are distinct

llowing discussion and lemma further exemplify the advantage of § of g:

Discussion 6. We introdice “mul vertices” s on the right ino knot dia- 2 L]
grams, whose only function (as we shall sec) is to cut cdges into parts that
may carry d.m»mm Iabels. When dealing with upright knot diagrams as in Figure 2.1, we

only allow null vertices where the tangent to the knat is pointing up, so that the mmnou
mumbers ¢y remain well defined on all edges. In the presence of null vertices the
A becomes a bit larger (by as many null vertices as were added to a knot diagram). T
rule (7) for the creation of the matrix A gets an amendment for null vertices,

k

colu

Tow J

and the summatio furA A A, is extended to include summands for the

null vertices. The matrix G = A~ ‘nud llm Futction g are defined as before. The g-rules

of (3) and (9) get i,
933 = 053+ gia

and

[0

and it remains true that the system of equations (S)(11) (as well as (9)0(12) fully deter-
mines gys. The variant G is also defined as before, except now a and b need to also be avay

ok =S+ 00y (12)

FIGURE 4.1. The modified Green function g, is invariant under Reidemeister moves
performed away from where it is measur

Lemmea 7. Inserting a null verter does not change fu, provided it is inserted away from the
ponts & and b
wof. Let D be an upright knot diagram having an edge labelled i and let DY be obtained

from it by adding a null vertex within edge i, naming the two resulting half-edges j and k
(in order). Let g, be the Green function for D, and similarly. g, for . We claim that

3= Bk B¢k}
Gi i 9is fa=j
Gs={ w—1 g g ifa=k
PR gor et ik}

Indeed, all we have to do is to verify that the above-defined ¢, satisfies all the g-rules
(8)u(11), and that is easy. The lemma now follows easily from the definition of ' in Equa-
tion (10)

[u]

Remark 8. The statement of our Main Theorem, Theorem 1, does not change in the pres-
ence of null vertices: There are no “F” terms for those, and their only effect on the definition
of @ in Equation (6) is to change the edge labels that appear within ¢, ¢, and ¢, and within

the Fy sum.

‘The following theorem was not named in [BV1] yet it was stated there as the first part of
the first proof of [BV1, Theorem 1]

Theorem 9. The variant Green function G is a “relative invariant”, meaning that once
points a and b are fired within a knot diagram D, the value of a does not change if Rei-
demeister moves are performed away from the points a and b (an :llustrvman appears in
Figure §.1). It follows that the same is also true for G for v =1,2,3

We note that G

s nearly the same as gos. if a is on o and b is on 5. So Theorem 9
also says that gy is invariant, under Reidemeister moves away from a and 3, except for
edge-renumbering isstes and =1 contributions that arise if a and 3 correspond to edges that
get merged or broken by the Reidemeister moves.

The proof of Theorem 9 is perhaps best understood in terms of the traffic function of
n 3: One simply hat for cach of the Reidemeister moves, traffic
cnteing the tangle diagram for the ef hand side of the move exits it in the same maner
as traffic entering the tangle diagram for the right hand side of the move, and each of
these verifications, as explained in [BV1, BN1, BN7], s very easy. Yet that proof is a bit

¥

“This statement does not make sense for g, as inserting a null vertex changes the dimensions of the

trix G = (gu).

Hul=lo Ua } EIREN]
7“‘2‘ o o - Aside 2:
Oe|| O §-Gortep |

counterclockwise and clockwise eyclic R2

FIGURE 4.2. A generating set of oriented Reidemeister moves as in [Po2, Figure 6].
Aside 1: the braid-like R2b is not needed. Aside 2: yet R2b cannot replace R2c™
because in the would-be proof, an unpostulated form of R3 is used (which in itself
follows from R2c*).

informal, so we opt here to give a fully formal proof along the lines of the first halves of [BV1
Propositions 7-9].

Proof of Theorem 9. We need to know how the Green function g,s changes under the
orientation-sensitive Reidemeister moves of Figure 42 (note that the gos do not see the
rotation numbers and don’t care if a knot diagram is upright in the sense of Figure 2.

We start with R3b. Below are the two sides of the move, along with the g-rules of
type (8) corresponding to the crossings within, written with the assumption that 7 isn't
in {i*,j*,k*}, s0 several of the Kronecker deltas can be ignored. We use g for the Green
function at the left-hand side of Rab, and ¢ for the right-hand side:

e+ (1= T)gj +(1-T)g}

8ig+Tgie s+ (=T 5 = T4 5+ (1-T)ef. 5
st s
85+ Tgj 5+ (1-Thgee 5 4 =0+ Tal 5+ (1-Thef 5
= O tg 5 LAY A
further further futher frter
rrules crommngs Srules

Recall that along with the further g-rules and/or g'-rules corresponding to all the non-
moving knot crossings, these rules fully determine gos and gl for 4 ¢ {i*,j*,k*
e computation (eliminating g« 5. g; 5, and ge- ;) shows that e st 5

To stem of
6 equations is equivalent to the following system of 6 equations

G5 = 03 + T2guee 5+ T(L=T)gyee s + (1= T)geoe 5.

N 13)
G5+ Tapo + (1= Thgpos, !

9a 900 = O3 + G

i3 = Tgirs 5+ (1= T)gje 5. 95t = G5 (14)
% and k* do not appear in (13) or in the further g-rules
corresponding to the urther crossings. Hence for the purpose of determining gy with
a8 ¢ {i* ' -k}, Equations (14) can be ignored.

iy, clminating s G052 and g from the sccond set of equations, we find that
it is equivalent to

Gt 5= G s
In this system the indices i*.

Gy =03 + TG0 5 + TA=T)gfs 5+ (1= Tgfs 5 (1)

G55 =8 + T 5 + (1= T)gjes 5. i = Oks + Ghos 5.
G = Tglee s+ (0= 0oy = Taloe s+ (1=Tee e Gho s = Ghoe . (16)
1g the same logic as before, for the purpose of determining g/, with a, 8 ¢ {i*,j*. k*}.

Equations (16) can be ignored.

But sow we compare the urigiored equations, (13) and
exactly the same, e the same is true for the further g-rules and/or
-rules coming from the further crossings.  Henee s long a8, 3¢ (1,3 k1. vo that
4o = 65 In the case of the R3b move no edges merge or break up, and hence this implies
that 7us = 7, 50 long as a and b are away from the move.

Next we deal with the case of R2¢*. We use the privileges afforded to us by Lemma 7 to
imsert 4 null vertices into the right-hand-side of the move, and like in the case of R3b, we
start with pictures annotated with the relevant type (5) and (1) g-rules, written with the
assumption that 3 ¢ (i

(15), and find that they are

S s =Tae st (1-Tigye s s
5= b3+ 00
i i X ) G
s =6+ T gm0+ (1= T gy
i N b
further further further fyrther
chossings Sles crimings oy

i the case of R3b, we climinate g;: 5 and g;- 5 from the equations for the left hand
side, and find that for the purpose of determining o with 8 ¢ {i*, "}, they are equivalent
to the equations

Ga=bia+ges  and  gs=8a+ g,

Likewise, the right hand side is clearly equivalent to
Ghp = Gi + gl
and as in the case of R3b, th s the invariance of g, under R2e moves,

For the remaining moves, R2¢~, R1l, and Rlr, we merely display the g-rules and leave it
to the readers to verify that when the edges i* and/or j* are climinated, the left hand sides

and g, =6+ g s

from the null vertices
l S S
N

el [ 0 D
H‘ H @‘“

FIGURE 4.3. The upright Reidemeister moves: The R1 and R3 moves are already
upright and remain the same as in Figure 4.2. The crossings in the R2 moves of
Figure 4.2 are rotated to be upright. We also need two further moves: The null vertex
move NV for adding and removing null vertices, and the swirl move Sw which then
implies that any two ways of turning a crossing upright are ve. We sometimes
indicate rotation numbers symbolically rather than using complicated spirals.

become equivalent to the right hand sides:

Bs+ g

55+ Taie s+ (1-Tgjoe
jive.8 Gyeris

(=T
855+ 958

Ngjes

i3 + 9ir3 +(1-T)gl 5

We can now move on to the main part of the proof of our Main Theorem, Theorem 1. We
need to show the invariance of ¢ under the “upright Reidemeister” moves of Figure 4.3,

Proposition 10. The moves in Figure {3 are sufficient. If two upright knot diagrams (with
null vertices) represent the same knot, they can be connected by a sequence of moves as in
the figure.
Proof Sketch. There is an obvious well-defined map
upright knot diagrams oriented knot diagrams

Telations as in Figure 13 relations as in Figure 12
We merely have to construct an inverse to that map. To do that we have to choose how to
turn each crossin oriented knot diagram to be upright. The different ways of doing so
e by instamccs of the S relation (1 deoper spirals nee to b swired ey, ull vertices
may be inserted using NV and the spirals can be undone one rotation at a time). A more
detailed version of the proof is in [BVH]

Proposition 11. The quantity 8 is invariant under R3b.

FIGURE 4.4. The two sides D' and D" ofthe R3b move. The Ieft side D! consits of
3 distinguished cros (1,5.K), ¢ 1.i.k%), & = (1.i%.j*) and a collection
of further crossings ¢ (a 1) € ¥ where ¥ isthe set nfcmssmgs not participating
in the R3b move. The right side D" consists of ¢; = (1.i.j). & = (Li*.k). ¢ =
(1.*.k~) and the same set Y of further crossings c,

Proof. Let Dy and D, be two knot diagrams that differ m\l» b\ an Rab move, and label
their relevant edges and crossings as in Figure 1.1, Let gf,,, and g, be their corresponding
Green functions. Let F{(c), Fi{co,c1) and Fifp,k) be e o o a5 in (3)-(5), and
similarly make Fy, Fj and F using g,

By Theorem 9, g, = gl 5o long as a, 5 ¢ {i*.j
differ in (D) between h = [ and h = r are the tern

O Erpm @) B' =Y Fiae,). and C" =Y Fi(e.e)
wd A maciddd) st dedh.cey
We claim that A’ B Land C' = C".

To show that A' = A", we need to compare polynomials in g, with polynomials in 47, in
which a anddma\ Delong to the set {i*. j*. k*} on which it may be that ¢ # ¢’. Fortunately
the g-rules (8) and (9) allow us g's, namely umom with
subscripts m(’ k=), i terms of other g's whose subscripts are in {i,j. ¥, i
where ¢! = ¢’ So it is enough to show that

*,k*}. And so the only terms that may

an

acteh ) eney

under g =g, A'/. (the gorules for o}, ¢}, ch) = A /. (the gerules for o, ¢, &), (18)

where the symbol /. means “apply the rules”. This is a finite computation that can -
principle be mmrrl out by hand. But each A* is a sum of 3 +9 nomials in the
4" or the ¢s, these polynomials are rather unpluamu (oee (3) nd ( m and applying the
elevant g0l e it to the complexity. ¥, we can delegate this pages-long
cal "l works curatly and docant complain

First, we implement the Kronecker 5-function, the g-rules for a crossing (.4, ). and the
gerules for a list of crossings X

to an er

I(a=== 4,1, 005
llules[(s 2 s I 0) = (B gs 2 Bera # 850 Beia # Vo B s (1-T0) By 4 60ss
B T B+ 60ty Bt 2 Bay s (1-T2) Bt 0By )i
gRules(X__List] := Unionee Table(gRules (<], {c, (X}}]
We then let X1 be the three crossings in the left-hand-side of the R3b move, as in Figure 4.1,
we let AL be the A' term of (17), and we let 1hs be the result of applying the g-rules for the

crossings in X1 to AL \\(' print only & *Short” version of 1hs because the full thing would

cover about 2.5 p:
&

XL (01,3, K0, (4 4, K0, (4, 4 305

AL = SumlFy(c], (¢, X1)] + SumlFa[<0, €1], (€0, X1}, (<1, X1)];

Ihs = simplify[AL //. gRules 00X1];

short 1hs, 5)

1

(33750 <1295

70w

20Ty (14T, (Tagy

(10 A-TaTy) g

1Ty g,y

X e e ]
PR

We do the same for A", except this time, without printing at all:

g

We then compare 1hs with ths. The output, True, tells us that we have proven (15)

B

We show that B' = B” by following exactly the same procedure. Note that we ignore the
summation over ¢, and instead treat c, as a fixed crossing (s, m. n). If an equality is proven
for every fixed . it is of course also proven for the sum over ¢, €

X (1, 4, 30, (1L 4%, k), (1, 3% K)
Ar = Sum(Fy(c], (¢, Xr)] + Sum(Fa[<O, c1], (<0, Xr), (<1, X} 15
rhs = Simplify(Ar //. gRules 0@Xr];

@ simplify(lns = rhs)

B

@ 1hs = Sum(F (<o, (s, m, M}, (<0, X1)] /7. gRules o0 X1;
S rhs = Sua(F3 (<0, (5, m, M), (<8, Xr}] //. gRules eeXr;
Simplify(1hs = rhs]

nilarly we prove that C' =

€7, and this concludes the proof of Proposition 11

True

m)

Remark 12. The computations above were carried out for generic s and for a generic
¢, = (5,m,n); namely, vmho\n specifying the knot diagrams in full, and hence without
assigning specific values 0 guqs, and without specifying m and n. Under these conditions
the three parts of (17) cannot mix (namely, terms from, say, A* cannot cancel terms in B*
or C*), and so it would have been enough to show that E' = E", where E* combines A* and

" and C* (and a few harmless further terms) by adding e, to the summation corresponding;
o AP

% rhs = Sua[F;[(s, ®, ), €11, (c1, Xr}] //. gRules e@Xr;
Simplify[lhs

8 1hs = SumlF (s, =, ), €11, (<1, X1)] /7. gRules 00X1;

rhs]

E" =
e

o)+

ot

Fco.1).
) )

But that's a simpler computation:

@ Esumix ) i SRR, (6, X)) + SRR (CO, €11, (68, X0, (€1, X)1) /7. ghules ow




€ X1= (@1, 3, K, (1, 5, KD, (4,1, 3005
® X = (1, 4, 3), (3, 4% KL (3,35 K005
s, mm =

2 (55 m 1)
Proposition 13. The quantity 6y is invariant under the upright R2¢* and R2c.
Proof. For R2c* we follow the same logic as in the proof of Proposition 11,
Remark 12. We start with the figure that replaces Figure 1.4 (note the null vertices in D"
and their minimal effect as in Lemma 7 and Remark )

=R

|l e

For R2e~ we allow ourselves to be even more concise:

EL=Esum(((1, 1, 5, (-1, 1%, 9), u, ™), (-1, 3115

Er = ESum(((s, m, 0)), (-1, 3'))] /. i+
(Union 0 gRules /@ (1, 1°, 3, 3" ;),

Simplify (Er = £1)

5, ' G
. |
Lo -

As in Remark 12, we let E' and E” be the sums corresponding to the diagrams D' and
D" above:
E'= Y F(0) + Y Fileae)) + B,

bl wadddal

B = F(6) + Fen6) + B,

We need to show that E' = E" after all relevant - Tules are applied to both sid
To compute these £ sums we first have to extend the ESum routine o accept also a list B
of pains (4 4) of the form (rotation number, cdge label:

Esum(X_, R_] i=
(SumIFL[], (S, X}] + SURIF (<O, €11, (<0, X}, (<1, X)] + Sum[F; @@r, () R}]) //+
leseex;

We then compute E' (and apply the relevant g-rules) by calling ESus with cr
~Li.3%), (1", ), and (s,m,n), and a rotation number of 1 on edge j

EL = Simplify[ESum[((-1,
Short (€1, 5

43 (1, 5% 30 (5, m m), (1, 305

(145025 (T3 Ta)* gyaepe e <c11om + 25,5

Ti(10s 25810 0800 <29 1 2580

(e Bo)  28a,5705) )

The computation of E” is simpler, as it only involves the generic (s, m, n) and the rotation
(1,j%). We implement the g-rules for null vertices as in Equations (11) and (12), compute
E7, and then compare E' with E” to conclude the invariance under R2e*

3 BRULESTI] in (85,0 30 65,0+ B, n By, 30 62t 9 B )

Er = ESum[((s, L3 - . (s 311 /7. (Unionee grules /e (4, i°, 3, 33
simplify(€l =

B e

D 14. The quantity 8 is invariant under RIl and R1r.

Proof. We aim to use the same approach and conventions as in the LS
previous two proofs but hit a minor snag. The g-rules for Rilinclude ) o\
Oiep + Tgive s+ (1= T)gis (1= T)gais + Baie.

9ies and  goe = goi +

and if these are implemented as simple left to right replacement rules, they lead to infinite |* A

recursion. Fortunately, these rules can be rewritten in the form

ges =T
which makes perfectly valid replacement rules. We thus redefine:

cat g and goe

BRUles[{1, 1%, 1)) = {8..1s 2 Buats + Buss Boion ™ Buf1v)s + 1o 8iss
B (1) 2 Te Brast +8a(0)0s Bros T Brs 0 T Burr )i

The same issue does not arise for Rlx (1), and thus the following lines conclude the proof:

=R

EL=ESum(((1, 1°, 1), {5, m M), ({1, ©'D)];
En = ESum(((s, m, n}}];
Er=ESun(((1, 1, i), {5, m M), ({-1, ©'1));
SimpLify (€1 = £ = Er)

Proposition 15. The quantity 6 is invariant under Sw.

Proof. This one is routine:
EL=ESum(((1, 1, 3}, (s, m 0}}];
Er=ESUn(((1, 1, 3}, (5, ™ M), ((-1, 1), (-1, 3), (L, £, (1, 315

8 Simplify(EL = Er)
B e

roposition 16. The quantity 0y is invariant under NV.
Proof. Tndeed, Fy is linear in .
We are now ready to complete the proof of the first part of the Main Theorem.

o

Proof of Invariance. The invariance statement in the Main Theorem, Theorem 1, now follows
from the invariance of the Alexander polynomial and from Propositions 10, 11, 13, 14, 15,
and 16. o

4.2 Proof of Polynomiality. We already know (sce Comment 2) that the on
to the polynomiality of ¢ comes from the explicit denominators in Eqmnom (3) and (4).
‘These denominators are (T;—1)~" (if 5., = 1) or (T;'~1)
So it is enough that we show that the residue R of 6 at T;
comes solely from the residues of F; and F; at T, = 1. Thus R s the knot invariant coming
from the same procedure as 0, only replacing Fy, Fy, and Fy by their residues Ry, Ry and
Ry at T, = 1. These residues are easily seen to be

Riyfe) = (T* = V)gji (g + 2AT" = V)95 — 95)

Rafeo.er)

0, where we have s

(T = DT = 1300 9iio (Xorgio = Xirsio — Xsr<io + X i)

and Ry =

nplified these for

las by making the following

© R depends anl\' on r. wlnth we rename to be T

AT,

T = 1y simple caleulation of the matrices A and G and/or wsing the traffc
interpretation of Comment 3, g3, is the indicator function oz of the incquality a < 3,
which is 1 if the inequality holds and 0 otherwise.

An explicit calculation for some specific Kots shows that the sums
and to Ry do not vanish individually: instead, they
¥ tchmique hat reltes a double sum (o o single sum. That's the content of the following
lemma:

Lemma 17. If there is a function f(cy,7) that depends on a crossing co and an additional
edge label such that (Bf)(ca) = f{co.2n+1)~ f(cs.1) = 0 and such that for any additional
crossing ¢, = (s1, i, j1) we have that

(@i len.e1) 1= FleosiT) + fleosdT) =
then the invariant R vanishes.

Proof.  Indeed, using the above equation and then telescopic summation over ¢; and the

shing of B,
R=3 Rafen.ex) + Y Rale) = 3 (@ )

-

Sleo.in) = fleo.Jr) = Ralco,e1) + Gy Ra(cn), (19)

0,1

D (Bf)(ew) = 0.

[u]

We can now complete the proof of the second part of the Main Theorem.

Proof of Polynomiality. Take f(co,7) = 1)g5io5, (Xosia = Xyssa). Use the easily
proven facts that gaus1s, = 0 = g7, to show that Bf = 0 and then use g-rules to verify
Equation (19). Now using Lemma e have that B = 0 and therefore 0 is a Laurent
polynomial. The only non-integrality for the coefficients of § may arise from the /2 term in
Fauation (5 and from the —<py/2 torme fn Equation (5). These add up to ((D) — #(D)/2,
using the notation of Equation (2). But w(D) — (D) is always an even number as it is 0
for the long unknot 1 and its parity is unchanged by crossing changes and by the moves of
Figure 43

n implementation and a verification of the assertions made in this section is at [BV3,

(T

1 n
knots
A
7ir
J
KR 6 | (65) | (352)
H 2 | 61 | (222)
(-0 [ (2] [(~113)
0[] 59
0 W | 09 | %5
T @peed (O YN )
T2 [ (pr. po. Kk A Vol | (0) | (~14) | (~54)
e [ @ | a
©,p2) O | @ | 0oy
[CXTD) [ ET 0]
N (DN NE] 18)
©. 1) 0) | 3 18)
to R [CA) ©) [ (~3) [ (~10)
ch other. So we'd better find 0O K H Vol T O (<3 [ (=10)

TABLE 5.1. The separation powers of some knot invariants and combinations of knot
invariants (in lines 3-19, smaller numbers are better). The data in this table was
assembled by [BV3, Stats.nb.

AND MEANING

5.1. Strong. To llustrate the strength of ©, Table 5.1 summarizes the separation powers of
© and of some common knot invariants nnd combinations of those knot invariants on prime
knots with up to 15 crossings (up to reflections and reversals).

In line 2 of the table we list the total number of tabulated knots with up to n crossings.
For example, there are 313,230 prime knots up to reflections and reversals with at most 15
crossings. In the following lines we list the separation deficits on these knots, for different
invariants or combinations of invariants. For example, in line 3 we can sce that on knots
sith up o 10 crossings, the . ,\lmudm polynomial A has a separation deficit of 35: meaning,
that it attains 219 — 38 distinct values on the 249 knots with up to 10 crossings. For
it 1o e the bttt Thos 1 deeit o 236,32 o & o < 15 means that
the Alexander polynomial is a rather weak invariant, in as much as separation power is
concerned.

In line 4 we shows the deficits for the Levine-Tristram signature oyp [Le, C
computed by the program in [BN7) to find that for knots mn. wp to 15
crossngs these deicits are smaller than those of A

Line 5 shows the deficits for the Jones polynomial J. It is better than A, and better
than A and oy taken together (deficits not shown) but still rather weak. Line 6 shows the

5. STRONG

UL

This s not a political sttemnent

FIGURE 5.1. The three pairs responsible for the deficit of 3 in the column n < 11 of
line 13 of Table 5.1. They are (11, (g7, Lazs), and (11,73, 11,74), and
each pair is a pair of mutant Montesinos knots (though © sometimes does separate
mutant pairs, as was shown in Section 3.2

r Khovanov homology Kh. They are only a bit lower than those of J. On line 7,
me HOMELY-PT polynomial 1 s noticcabiy betier
n line 8 we consider the hyperbolic mlume Vol of the knot complement, as computed
by SuapPy [CDGW]. We computed volu 'v's high_precision flag, which
makes SuapPy compute to ronghly 63 decimal digits, and then truncated the resuts to 58
decimal digits to account for possible round-off errors within the last few digits. But then we
are unsure if we computed enough. ... Hence the uncertainty symbols “~* on some of the
Vol. This said, Vol seems to be the champion

results here and in the other lines that contai
50 far.
Line 9 is “everything so far, taken together”.

Note that Kh dominates J and H dominates
ix. We note that adding
). does not improve the results;
namely, for knots with up to 15 crossings the pair (Kh, Vol) dominates oz, even though each
of K and Vol docs ot dominate o and the dicrepancios stat aleady at 11 crossings
We don't know if this means anythi

On line 10, the Rosansky-Overbay ivariant py [Roz1, Rov2, Rozs, Ov], also discussed
by us in [BV1], does somewhat better. Note that the computation of A 'is a part of the
computation of py. so we always take them together. In line 11 we add py [BN4] to make
the results yet a bit better.

very

rong — the deficit here, for knots with up to 15
ossi line 12! For the interested, Figure 5.1 shows the
3 pairs that create the deficit in the column 7 < 11 of this line.

Line 14 reinforces our case by just a bit: note that it makes sense to bundle p, along with
©, for their computations are very similar. Note also that Conjecture 21 below means that
it is pointless to consider (O, ).

Line 15 shows that for knots with up to 15 crossings, © dominates opr. We don’t know if
this persists.

FIGURE 5.2. The 48-crossing Gompf-Scharlemann-Thompson GST s knot [GST].

Lmh 16 through 18 show that at crossing number < 15 and in n..- presence of ©, and

n the presence of both © and py, it is pointless to also or Kh, and
onts il sl o s consider Vol Link 10 shows that once Vo hae been added 10 6,
the other invariants contribute almost nothing

We note that of all the invariants considered above, the only one known to (sometimes)
detect knot mutation is © (see Section 3.2)

We also note that the V;, polynomials of Garoufalidis and Kashaey [GK], and in particular
Vi [GL] share many properties with © and are stronger than © on knots with up to 15
crossings. But they are not nearly as computable on large knots. It would be very interesting
It

o explore the relationship between the V,s and ©.

5.2. Meaningful. Many knot polynomials have some separation power, some more and
some les, yet they soom to “see” almost o other topological pxopol en of It i
areatest exception is the
Bowers, ives a gonus bound. a beredncss tondumn st sibbon condition. The defition

of 0 is in some sense “near” the definition of A, and one may hope that 8 will share some of
the good topological properties of A

The Knot Genus. With significant computational and theoretical evidence (see also

521
Discussion 26 and Comment 29 below) we believe the following to be true:

Conjecture 18. Let K be a knot and g(K) the genus of K. Then degy, 0(K) < 29(K).

Using the available genus data in Knotlnfo [LM] we have erified this conjecture for all
nots with up to 13 crossings (see [BV3, KnotGenus.ub]). The example of the Conway knot
and the Kinoshita-Terasaka knot in Section 3.2 shows that the bound in Conjecture 15 can
be stronger than the bound degy A(K) < g(K) coming from the Alexander polynomial.
Auother such example i the 43-crossing Gompf-Scharlemann-Thompson GST's knot [GST]
of Figure 5.2. Here's the relevant computation, with X,y (say) mear “the crossing
1,14,1)" and X320 (say) meaning “(~1,2,29)":

Xe,55 X0,2 Xi Xea110 Kar,a20
Xo,155 T, > Yan, 100

o5 B0, Xi

Polynomiality.nb)
855'--5?0[1(;4,1»7:.)-.Xl.u:)‘u.nin.» J - J
v

s Kar, 20 Kis 0 Koo,

522 Tom, 22 K120 Ko, 105 Vo0 X200
X3,525 Xea, 335 Rso,355 Xoe,015 Xs7,705 Xou,595
Fonsar Xaa, 555 Xsa,455 Xeo,460 Xoo,475 Xan,015
Xoo,495 Xst,025 Xs2,715 Xs3,605 Xes, 705 Kea, a5,
o052 Far,ier Rer 0 X000 Fea,rs Frnm] 3

AbsoluteTininge

PolyPlot [{4es, Ous) = ©[GSTas),
Inagesize - Saall]

(18,583,

@ (Exponent s, T, Exponent (0u, Tl /21)

B oo

Thus 0 gives a better lower hound on the genus of GSTys, 10, then the lower bound
coming from A, which is 8. Secing that GST'ss may be a counter-example to the ribbon-slice
conjecture [GST], we are happy to have learned more about it. Also see Dream 33 below.

“The hexagonal QR code of large knots i often a clear hexagon (e Figure 1.4), bt the
hexagonal QR code of GST,s, displayed above, is rounded at the comers. We don't know if
this s tellng s anything about topologica propertics of GST

5.22. Fibered Knots. Upon inspecting the values of © on the Rolfsen table, Figure 1.1, we
noticed that often (but not always) the bar code shows the exact same colour sequence as
the top row of the QR code, or exactly its opposite. This and some experimentation lead

o the following conjecture, for which we do not have theoretical support. See a similar
result on the ADO invariant at [LV]

Conjecture 19. If K is a fibered knot and d is the degree of A(K) (the highest power of
T), then the coefficient of T2 in 0(K), which is a polynomial in Ty, is an integer multiple
Of TYA(K) iz, See examples in Figure 5.5, where the integer factor is denoted s(K).

Using the available fiberedness data in Knotnfo L] we found that the condition in this
conjecture holds for all 5,397 fibered knots with up to 13 crossings, while it fails on all but
f the 7,568 non-fibered knots with up to 13 crossings. See [BV3, FiberedKnots nb.

We note that if K is fibered then degrec d of A(K) is the genus of K. and A(K) is
‘monic, meaning that the coefficient of T in A(K) is +1 (see [Rol. Section 10H]). The latter
mudmnn is an often-used fast-to-compute criterion [or a knot to be fibered

If Conjecture 19 is true then the condition wother fast-to-compute criterion for o
Kot 1o be fibered, and thi crterion is sometimes sronger than the Alexander conditon.
For example, both the Conway and the Kinoshita-Terasaka knots are not fibered yet their
omial is 1, which is monic in 0 is not an
o the condition n Conjecture 19 would deteet that

e two knots are not fibered.

6. STORIES, CONJECTURES, AND DREAMS

There is a storyteller in each of us, who wants to tell a coherent story, with a beginning,
a middle, and an end. Unfortunately of us, the © story isn’t that neat. Calling the content

FiGURE 5.3. The invariant © of the
fibered knot 12,502, also known as the
(~2.3,7) pretzel knot, and of the fibered
For the first, s(K) > 0 and the
bar code visibly matches with the top row
of the QR code (though our screens and
printers and eyes may not be good enough
to detect minor shading differences, so a
visual inspection may not be enough). For
the second, twice the degree of A is
greater than the degree of 6, 50 5(K) =

FIGURE 6.1. A long version of the rotati
virtual knot KS from [Kau3]. It h:
{(=1.1.6).(-1,2.4). (1,9.3). (-1,7.5).(
and o= (— 0.-1.0,0.1,0,0)

s X =
1.10.8)}

of the first few sections of this paper “the middle”, we are quite unsure about the beginning
and the end. The “beginning” can be construed to mean “the thought process that lead us
here”. But that process was too long and roundabout to be full here (though much
of it can be gleaned by reading What's worse, we believe that ultimately, our
peculiar thought process will be replaced by much more solid foundations and motivations,
perhaps along the lines of Dreams 35 and 36. But this solid foundation is not 1\'a|lahlc yet
even .r we are working hard to expose it. As for th of the story, it is clearly in the

Hnucc this section is a bit sketchy and disorganized. Those facts that we already know,
those conjectures we believe in, and the dreams we dream, are here in some random order
But the narrative is lacking.

Many of the statements below continue a theme from Section 5.2, that @ shares many of
the pruporli(s of A, and sometimes sharpens them.

Conject . 6 has hemymml symmetry
s mh«m.mm (- T,
about a horszontal line”), and (T, — T\T;
reflection about the line of slope 30°).

That is, for any knot K, 0(K) is invariant
) (“the QR code is invariant under reflection
s — T;) (“the QR code is invariant under

he Alexander polynomial A is invariant under a simpler symmetry, T — T~%. Tt is
rather difficult to deduce the symmetry of A from the formula in this paper, Equation
(though it is possible; once notational differences are overcome, the proof is e.g. in [CF
Chapter IX)). Instead, the standard proof of the symmetry of A uses the Seifert surface
formula for A (e.g. [Li, Chapter 6]). We expect that Conjecture 20 will be proven as soon
as a Seifert formula is found for 8. See Dream 35 below.

A rotational virtual kot is a virtual knot diagram nmm\ whose edges” are marked with
“rotation numbers” ¢, modulo the same moves as in Figure 4.3.” Clearly,  extends to long

rotational virtual knots, and the proof of the M Theoren, Thoorenn 1. extonds nearly
Cerbatime. Yet as shown below, on the long rotational vietual knot K of Figure 6.1 (and
indeed, on almost any other long rotational virtual knot which is not a classical knot), the
hexagonal symmetry of 0 fails. So something non-local must happen within any proof of
Conjecture 2

@ XS (((-1,1, 6), (-1, 2, 4), (1,9, 3), (-1, 7,5}, (1,10, 8)),
(9,0,0,1,0,-1,0,0,1,0,0));
PolyPlot (8(KS), Imagesize -+ Tiny)

Conjecture 21. If K denotes the mirror image of a knot K., then 0(K) = ~0(K)

Conjecture 22. If =K denotes the reverse of a knot K (namely, K taken with the opposite
orientation). um.o K) = 0(K)
Fact 23. fy(K) is additive under the connected sum operation of knots: Oo(Ki#K,) =

04(K) + 0o(K.). Equivalently, using the known multiplicativity of
HE#K,) = 0(K)A (K Ao(K,) A (K,) + H(A,)AA(I\’:)-\AKA)N(KK)
Oddly, Fact 23 is easier to prove than Conjectures 21 and 2:

Proof Skeich. The Fy and F; summations in Equation (6) are rlmrl» additive, and so is the
part of the Fy summation in which ¢ and ¢, fall within the same component. It remains
to consider the case where ¢y and ¢, fall within different components. But in that case, the
factor g1, 8ss, Within the definition of F; in (4) vanishes because cars only drive forward,
and either gy,;, oF gy, measures traffic going backwards. o

Conjecture 24. 0 dominates the Rozansky-Overbay invariant py [Roz1, Roz2, Roz3, Ov).
also discussed by us in [BV1]. In fact, py = ~Blr, 71,1

Conjecture 25. 8 is equal to the “tuwo-loop polynomial” studicd eztensively by Ohtsuki [OD2),
continuing Rozansky, Garoufalidis, and Kricker [GR, Rozl, Roz2, Roz3, K]

Discussion 26. People who are already familiar with “the loop expansion” may consider
the above conjecture an “explanation” of 6. We differ. An elementary construction ought to
have & \m\plu explanation, and the loop expansion is too (umphmmd to be that

Bc as it may, Ohtsuki [Oh2] shows ihat me ture 25 implies Conjectures 18, 20,
well as Fact 23, onld s preict the behaviour of 8 vnder
Witehead doubles o i [Gar] and under abling operations s i [0n3)

Next, let us briefly sketch some key po
btain poly-time computable knot invari

from [BN2, BV, where we explain how to
nts from certain Lie algebraic constructions.

Flgnoring “virtual crossings”. See [BDV, Secton

03] but the equivalence is easy to show.
iy be half integers, as w(D) — $(D)

Discussion 27. Let g be a semi-simple Lic algebra, let b be its upper Borel subalgebra, and
let b beits Cartan subalgebra. Then b has a Lic bracket 3 and, as the dual of the lower Borel
:.nnlmlg(-hm it also s a cobracket 5. T turs out that g ean he recovered from the triple
(. in fact, ¢* = 9@ > D(b, 3,8), where D donotes the Manin double construction’.
We now set g == D(b. 3.¢5), where ¢ is a formal “small” parameter. The family g/ is a
I parameter family of Lie algebras all defied on the same wnderlying vector space b 1
¢is invertible then g/ is independent of ¢ and is always isomorphic to g* = gf . Yet at ¢ = 0,
g is solvable, and as the name “solvable” suggests, computations in gj can be “solved”,
meaning, can be carried out efficiently in closed form.

Hence in [BN2, BV2], mostly in the case where . we use standard techniques to
quantize the universal enveloping algebra 4(a¢) and wse it to define a ||mv|'r\a\l quantum
invariant” Z (in the sense of [Law, Oh]). We then expand Z? near where it's easy; namely
as a power series around ¢ = 0. In the case of 1 almost cortanly i genral, we
wite 29 = ghexp (S0, 73¢) and find that we can nterpret the polynomials in as
wmany variables as the rank of g. It tums out that 78 is always determined by the \lmndu
polynomial and the § are always computable in pnlnmmml time (with polynomials whos

exponents and coefficients get worse as d grows bigger and g gets more complicated).
ur papers and talks [BV1, B2, BN4] carry out the above procedure in the case where
Iy, calling the resulting invariants pg. for d > 1. They are the same as p; and p, of
Section 5.1. @m

‘summer of 2024 we've set out

preliminary work by

aveling [Sch]. i
to Imd goo(l Torma for P, Tracing Discusion 27 seemeed technically hard, so instead, we
extracted from the procedure the “shape” of the formulas we could expect to get and, and
then we found the invariant 6 by the method of undetermined coefficients assisted by some
cult-to-formulate intuition (more in Comment 31 below). Thus our formulas for 8 arose
from our expectations for pi”, and yet we have not proved that they are equal!

Conjecture 28. Up to conventions and normalizations, 6 = i

Comment 29. Using the techniques of [BN3, BV2] we expect to be able to prove a genus
bound for ", similar to the bound in Conjecture 15. Thus we expect that Conjecture 25
will imply Conjecture 15.

Discussion 30. People who are versed with Lie algebras and their quantizations m:
sider the above an “explanation” of 0, and may be looking forward to a more detailed
expasition of . We differ, for the same reasons as in Discussion 26, We expect the eventual
“origin story” of 6 to be simpler and more natural,

Discussion 31. Seeing that the coproduct of the quantized algebras of Discussion 27 corre-
spond to strand doubling, and also noting Ohtsuki’s [Oh3], we expect that there should be
cabling and satellite formulas for all the invariants of the type ¢%, and in particular for ©. Tn
pm.cuhy it should not be possible to increase the separation power of 6 by pre-composing
bling or satellite operations [}

W are unsure about naming. s also kuown as “the Drinfeld double” construction for Lic bialgebras
(a5 opposed to Hopf algebras). Vet when Drinfeld first refers to this construction in [Dr], i reference to
Lo blaebens, o opotody s ¢ e Mo (wndos the o ch e Moain il 7o willions
providing a reference. Our choice is to use “Manin double” when doubling Lie bialgebras ai
double” when do e we found mo ndication tha Aani knew bt the ater process

Discussion 32. It is the basis of the theory of “Feynman diagrams”, and hence it is ex-
tremely well known in the physics community, that perturbed Gaussian integrals, e
convergent can bo computed (s acymptotie srics) eficiently using Fevnman diogea

{cee e, [Po1]. Physiciat s thie routinely in miiite dmensions. vt th fnite imencional
formulation can be sketched as follows:

[Ler~egesen.
o n=0 F

where @ is a non-degenerate quadratic on BY, P is a “smaller™ perturbation, C is so
constant involving ’s and the determinant of @, the summation 3. is over “Feynm:
diagrams” of complexity n, and F — £(F) is some procedure, which can be specified in full
ut we will not do it here, which assigns to every Feynman diagram F an algebraic sum
which in itself depends only on the coefficients of P and the entries of the inverse of Q.

In fact, one may take the right-hand-side of Equation (20) to be the definition of the
left-hand-side, nspccnll) if the lcft lnnd side i not convergent, or does not make sense for

some other reason. Nan
4,0..,, exeyan

The result is an integration theory defined on pmurhcd Gaussians

@n

fully algebraic terms,
ch as having a version
Uheorem. T a sense, that’s what physicats do: pati s don't quite make
sense, so instead they are defined using Feynman diagrams and the right-hand-side of Equa-
tion (21). Another example is the “Arhus integral” of [BGRT], where the integral in itself
is diagrammatic, as is the output of the integration procedure.

t 33. There is a perturbed Gaussian formula for ©.
6-dimensional Euclidean space RS with coondinates pre. pae, pse
a knot diagram D and then form Reg = [, B, a space whose dimension is 6 times the
wumber of dges in E. One can then form a *Lograngian’ Ly - Qp -+ <Py, by summing oter
all the crossings of D local contributions that involve only the variables associated with the
Jour edges around each crossings, and adding a “correction” which is a sum over the edges e
of D of terms that depend only on the rotation number of ¢ and on the variables in Y, such
that

More precisely, one can assign

Ly, T B3 0 each edge e of

(om¥El
EYwN
and such tha the Feynman dingram cxpansion of th cfhand-side of the above cquation
becomes precisely formula (6) for 0. See more about all this in [BN6]

P exple) +O(),

mII

Comment 34. In fact, Fact 33 is what e predicted based on alo
with some further information abont the of Pp. We used the method of unde-
termined coefficients to find precise [mmnlm Tor Py, and then the technique of Feynman
diagrams to derive our main formula, Equation 6.

Dream 35. There is a “Seifert formula” for ©. More precisely, let K be a knot, let  be
a Seifert surface for K, let H = Hy(S:R), and let 6H denote HOHOHOHO H® H.
Let Qs denote 3 copies of the standard Seifert form on H ® H, taken with parameters Ty,
Ty, and Ty; 0 Qx is a quadratic on 6H. We dream that there a “perturbation term” Py,

a polynomial function on GH defined in terms of some low degree finite type invariants of
various knotted graphs formed by representatives of classes in H (also taking account of their

intersections), such that
(2m)samit
in in Aidody
f this dream is true, it will probably prove Conjectures 15, 20, 21, and 22 much as the
Seifert formula for A can be used to prove the genus bound provided by A and its basic
symmetry properties.
We note the relationship between this dream and [Oh2, Theorem 4.4]

e

explefy) + O(*).

Dream 36. All the invariants from Discussion 27 have Seifert formulas in the style of
Dream 55. In fact, there ought to be a characterization of those Lagrangians Ly for which
§¢t is a knot invariant, and there may be a construction of all those Lagrangians which is
intrinsic to topology and does not rely on the theory of Lie algebrus.

If a knot K is ribbon then for some g it has a Seifert
surface % of genus g such that g of the generators of Hy (%)
can be represented by a g-component unlink (see the hint
on the right, and see further details in [Kaul, Chapter VIII]
orin [Ba, Section 3.4]). This implies that the Seifert matrix
Mof s

has the form which implies that the determinant of M, the Alexander

A
A B,
‘the Fox-Milnor condition:

polynomial A, sat
Theorem 37 (Fox and Miluor, [FM]). If K is a ribbon knot, then there exists some polyno-
mial f(T) such that A = f(T)F(T)

Dream 38. Dream 35, along with the fact that half the homology of a Seifert surface of a
ribbon knot can be represented by an wnlink, will imply that 0 takes a special form on ribbon
knots, giving us stronger powers to detect knots that are not ribbon.

ussion 39. Tn this paper we concentrated on knots, yet at least partially, © can be
genemlmd also to links. Indeed, the definitions in Section 2 and the proof in Section 4 go

through provided the matrix A is invertible; namely, provided the Alexander polmomml A
is non-zero (for kmm i s always the cas), and provided we choose one compor
the link to cut o

"The programe of Sction 3 filfor minor reasons, and a fix is [BV3, ThetadLinks.nb].
Some results are in Figure 6.2 Preliminary iggests that the
resulting invariant is independent of the choice of the cut component, but we did not prove

at.

estin

If A = 0, one may contemplate replacing G
matrix of codimension 1 minors, which satisfies A - adj(4) )1).* Some preliminary
testing is also in [BV3, ThetadLinks.nb]. Yet if G is replaced with adj(4), its equivalence
with the g-rules (Equations (S) and (9)) breaks, and 5o we have 1o proof of invariance. We
may attempt to fix that in a future work, but it is not done yet.

by the adjugate matrix adj(4) of A (the
let(A)

NSimie “svgrle” resoning shoms st 0 i abmys vl by ATHT)APNTIANT), whee
AT is the second Alexander polynowial (e, [BZ, De 1)

|
8

DEDFE

T

B BE D)

FIGURE 6.2. © for all the prime links with up to 9 crossings, up to reflections and
with arbitrary choices of strand orientations. Empty boxes correspond to links for which
a=o.

We note that the loop expansion of Conjecture 25 does not predict that © should extend
to links. We also note that the solvable approximation technique of Discussion 27 does
predict such an extension, and in fact, it predicts more: that much like the Gassner repre-
sentation [Gas] and the multi-variable Alexander polynomial (e.s. [Kaw, Chapter 7)), there
should be a multi-variable version of © which would be a polynomial in 2m variables when
cvaluated on an m-component link. We did not attempt to find explicit formulas for
multi-variable ©.

Ever since Khovanov homology [Kh, BN1] it is almost mandatory to ask about anything
‘does it categorify?”. © is not exempt:

Question 40. Is there a categorification of 7 I there a finite triply-graded chain complex
‘whose Euler characteristic is # and whose homology is invariant?

Wo note hat 0 is  acighbor of & (ndocd they ive togetber within ), and that A s
categorified by knot Floer homology [0S, M: Thus one may wonder if a categorification
G il nd up. o ncighbor of Floer knot homologs. This applies oven me (o 4 posible
categorication of gu:

Question 41. Is there a categorification of A - 7 Is there a finite doubly-graded chain
complex whose Euler characteristic is A - 7, and whose homology is a relative invariant in
the sense of Theorem 97

s likel

The latter scem A

A Gy is, after all, a minor of a matrix whose determinant
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