DIAGRAMMATIC OBJECTS, EXPANSIONS, AND THE GRADED TURAEV COBRACKET AS DIVERGENCE

Let Σ be a compact oriented surface with first homology $H = H_1(\Sigma; \mathbb{Q})$ carrying its intersection form $\omega \in \Lambda^2 H$. The vector space spanned by free homotopy classes of loops on Σ carries the Goldman-Turaev Lie bialgebra structure: the bracket records signed intersections, and the cobracket records self-intersections. After completing and grading by powers of the augmentation ideal of $\pi_1(\Sigma)$, a symplectic expansion

$$Z: \ \widehat{\mathbb{Q}[\pi_1(\Sigma)]} \longrightarrow \widehat{T}(H)$$

identifies the associated graded with cyclic words Cyc(H) = T(H)/[T(H), T(H)].

1. The graded cobracket. Under Z, the graded Turaev cobracket is the operator

$$\delta_T(a_1 \cdots a_n) = \sum_{i < j} \omega^{ij} (a_{i+1} \cdots a_j) \otimes (a_{j+1} \cdots a_i),$$

where ω^{ij} are the components of ω^{-1} in a symplectic basis. Diagrammatically, δ_T "cuts" a beaded circle and inserts ω at the cut.

A beaded circle split into two by inserting the symplectic form ω .

2. The interpretation map. For a quadratic Lie algebra $(\mathfrak{g}, \langle , \rangle)$, each $h \in H$ acts by contraction with the corresponding infinitesimal holonomy variable. This yields an *interpretation map*

$$I: \mathrm{Cyc}(H) \longrightarrow \mathrm{Inv}(S(\mathfrak{g})),$$

sending a cyclic word $a_1 \cdots a_n$ to the invariant tensor obtained by replacing each a_i with the corresponding element of \mathfrak{g} and contracting indices using $\langle \ , \ \rangle$ and ω .

3. The differential—geometric avatar. A theorem of Alekseev–Kawazumi–Kuno–Naef ($Invent.\ Math.\ 2023$) asserts that, for a symplectic expansion Z, the diagram

$$Cyc(H) \xrightarrow{\delta_T} Cyc(H) \otimes Cyc(H)$$

$$\downarrow I \qquad \qquad \downarrow I \otimes I$$

$$Inv(S(\mathfrak{g})) \xrightarrow{div} Inv(S(\mathfrak{g})) \otimes Inv(S(\mathfrak{g}))$$

commutes, where div is the divergence operator—the trace of the covariant derivative with respect to the canonical symplectic connection on the moduli of flat \mathfrak{g} —connections.

4. Aphorism. Diagrammatic objects pine for specializations: under the interpretation map, the beads of the Turaev cobracket become tensor indices, and the cobracket itself becomes the divergence operator.