Abstract. I will report on joint work with Zsuzsanna Dancso, Tamara Hogan, Jessica Liu, and Nancy Scherich. Little of what we do is original,

and much of it is simply a reading of Massuyeau [Ma] and Alekseev and Naef [AN1].

We study the pole-strand and strand-strand double filtration on the space of tangles in a pole dance studio (a punctured disk cross an interval), the corresponding homomorphic expansions,

and a strand-only HOMFLY-PT Jessica, Nancy, Tamara, Zsuzsi, & Dror in PDS4 relation. When the strands are transparent or nearly transparent to each other we recover and perhaps simplify substantial parts of the work of the aforementioned authors on expansions for the Goldman-Turaev Lie bi-algebra.

Definitions. Let $\pi := FG(X_1, \ldots, X_p)$ be the free group (of deformation classes of based curves in D_p , $\bar{\pi}$ be the framed free group (deformation classes of based immersed curves), $|\pi|$ and $|\bar{\pi}|$ denote \mathbb{F} -linear combinations of cyclic words ($|x_iw| = |wx_i|$, unbased curves), $A := FA\langle x_1, \ldots, x_p \rangle$ be the free associative algebra, and let $|A| := A/(x_i w = w x_i)$ denote cyclic algebra words.

mi, Kuno, Naef). $|\bar{\pi}|$ and |A| are Lie bialgebras, and there is a $Z(\lambda_1(\gamma)) = \lambda_0^a(W(\gamma)) - \lambda_1^a(W(\gamma)) = \hbar \eta^a(W(\gamma))$. "homomorphic expansion" $W: |\bar{\pi}| \to |A|$: a morphism of Lie bialgebras with $W(|X_i|) = 1 + |x_i| + ...$

Further Definitions. •
$$\mathcal{K} = \mathcal{K}_0 = \mathcal{K}_0^0 = \mathcal{K}(S) := \mathbb{F}\langle \text{framed tangles in } PDS_p \rangle.$$

F{framed tangles in PDS_p }. • $\mathcal{K}_t^s :=$ (the image via × → × – × of tangles in PDS_p that have *t* double points, of which *s* are strand-strand).

g.,
$$\mathcal{K}_5^2(\bigcirc) = \left\langle \begin{array}{c} & & \\ &$$

• $\mathcal{K}^{/s} := \mathcal{K}/\mathcal{K}^s$. Most important, $\mathcal{K}^{/1}(\bigcirc) = |\bar{\pi}|$, and there is $P: \mathcal{K}(\bigcirc) \to |\bar{\pi}|.$ • $\mathcal{A} \coloneqq \prod \mathcal{K}_t / \mathcal{K}_{t+1}, \quad \mathcal{A}^s \coloneqq \prod \mathcal{K}_t^s / \mathcal{K}_{t+1}^s \subset \mathcal{A}, \quad \mathcal{A}^{/s} \coloneqq \mathcal{A} / \mathcal{A}^s.$

Fact 1. The Kontsevich Integral is an "expansion" $Z: \mathcal{K} \to \mathcal{A}$, compatible with several noteworthy structures.

Fact 2 (Le-Murakami, [LM1]). Z satisfies the strand-strand HOMFLY-PT relations: It descends to $Z_H : \mathcal{K}_H \to \mathcal{A}_H$, where

$$\mathcal{K}_{H} \coloneqq \mathcal{K} \middle| \left(\swarrow - \swarrow = (e^{\hbar/2} - e^{-\hbar/2}) \cdot \right) \Big|$$

$$\mathcal{R}_{H} \coloneqq \mathcal{R} \middle| \left(\longmapsto = \hbar \rightarrowtail \text{ or } \models = \hbar \leftthreetimes \right)$$

$$= (1, 1)$$

and deg $\hbar = (1, 1)$.

Proo

E.

f of Fact 2.
$$Z(\stackrel{\times}{\sim}) - Z(\stackrel{\times}{\sim}) = \stackrel{\times}{\sim} \cdot \left(e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}} \right)$$

$$= \stackrel{\times}{\sim} \cdot \left(e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}} \right) = \left(e^{\frac{\pi}{2}} - e^{-\frac{\pi}{2}} \right) \stackrel{\times}{\sim}$$
Le, Murakami

Key 1. $W: |\bar{\pi}| \to |A|$ is $Z_H^{/1}: \mathcal{K}_H^{/1}(\bigcirc) \to \mathcal{A}_H^{/1}(\bigcirc).$

Key 2 (Schematic). Suppose $\lambda_0, \lambda_1 \colon |\bar{\pi}| \to \mathcal{K}(\bigcirc)$ are two ways of lifting plane curves into knots in PDS_p (namely, $P \circ \lambda_i = I$). Then for $\gamma \in |\bar{\pi}|$, **Lemma 1.** "Division by \hbar " is well-defined.

$$\eta(\gamma) \coloneqq (\lambda_0(\gamma) - \lambda_1(\gamma))/\hbar \in \mathcal{K}_H^{/1}(\bigcirc \bigcirc) = |\bar{\pi}| \otimes |\bar{\pi}|$$

and we get an operation η on plane curves. If Kontsevich likes λ_0 and λ_1 (namely if there are λ_i^a with $Z^{/2}(\lambda_i(\gamma)) = \lambda_i^a(W(\gamma))$), then η will have a compatible algebraic companion η^a :

$$q^{a}(\alpha) \coloneqq (\lambda_{0}^{a}(\alpha) - \lambda_{1}^{a}(\alpha))/\hbar \in \mathcal{R}_{H}^{/1}(\bigcirc \bigcirc) = |A| \otimes |A|.$$

Theorem 1 (Goldman, Turaev, Massuyeau, Alekseev, Kawazu- For indeed, in $\mathcal{H}_{H}^{/2}$ we have $\hbar W(\eta(\gamma)) = \hbar Z(\eta(\gamma)) = Z(\lambda_{0}(\gamma)) - Z(\lambda_{0}(\gamma))$

Example 1. With
$$\gamma_1, \gamma_2 \in$$

 $|\pi|$ (or $|\bar{\pi}|$) set $\lambda_0(\gamma_1, \gamma_2) =$
 $\tilde{\gamma}_1 \cdot \tilde{\gamma}_2$ and $\lambda_1(\gamma_1, \gamma_2) = \tilde{\gamma}_2 \cdot$

 $\tilde{\gamma}_1$ where $\tilde{\gamma}_i$ are arbitrary lifts of γ_i . Then η_1 is the Goldman bracket! Note that here λ_0 and λ_1 are not welldefined, yet η_1 is.

Example 2. With $\gamma_1, \gamma_2 \in \pi$ (or $\overline{\pi}$) and with λ_0, λ_1 as on the right, we get the "double bracket" $\eta_2 \colon \pi \otimes \pi \to \pi \otimes \pi \text{ (or } \bar{\pi} \otimes \bar{\pi} \to \bar{\pi} \otimes \bar{\pi})$

Example 3. With $\gamma \in \overline{\pi}$ and $\lambda_0(\gamma)$ its ascending realization as a bottom tangle and $\lambda_1(\gamma)$ its $\int_{ascending}^{ascending}$

descending realization as a bottom tangle, we get $\eta_3: \bar{\pi} \to \bar{\pi} \otimes |\bar{\pi}|$. Closing the first component and anti-symmetrizing, this is the Turaev cobracket.

Example 4 [Ma]. With $\gamma \in \overline{\pi}$ and $\lambda_0(\gamma)$ its ascending outer double and $\lambda_1(\gamma)$ its ascending inner double we get $\eta_4: \bar{\pi} \to \bar{\pi} \otimes \bar{\pi}$. After some massaging, it too becomes the Turaev cobracket.

ascending des

descending

The rest is essentially **Exercises:** 1. Lemma 1? 2. A? **3.** Fact 2? **4.** $\mathcal{A}^{/1}$? Especially, $\mathcal{A}^{/1}(\bigcirc) \cong |A|!$ 5. Explain why Kontsevich likes our λ 's. **6.** Figure out η_i^a , $i = 1, \dots, 4$.

Dancso Hogan

Liu

