Preliminary Definitions. Fix $p \in \mathbb{N}$ and $\mathbb{F} = \mathbb{O}/\mathbb{C}$. Let $D_p \coloneqq D^2 \setminus (p \text{ pts})$, and let the Pole Dance Studio $\mathbf{b} \in PDS_p \coloneqq D_p \times I.$ *PDS*₂

Abstract. I will report on joint work with Zsuzsanna Dancso, Tamara Hogan, Jessica Liu, and Nancy Scherich. Little of what we do is original,

and much of it is simply a reading of Massuyeau [\[Ma\]](#page-1-0) and Alek-seev and Naef [\[AN1\]](#page-1-1).

We study the pole-strand and strand-strand double filtration on the space of tangles in a pole dance studio (a punctured disk cross an interval), the corresponding homomorphic expansions,

and a strand-only HOMFLY-PT Jessica, Nancy, Tamara, Zsuzsi, & Dror in *PDS*₄ relation. When the strands are transparent or nearly transparent to each other we recover and perhaps simplify substantial parts of the work of the aforementioned authors on expansions for the Goldman-Turaev Lie bi-algebra. ⁼[⇒] Expansions *^W* : *FG*⟨*Xi*⟩ → *FA*⟨*xi*⟩: Magnus: *^Xⁱ* \rightarrow 1 + *x*_i, X_i^{-1} \rightarrow 7→ 1 − *xi*+ *x* 2 7→ e

ⁱ [−] . . .Exponential: *^X* Definitions. Let π ^B *FG*⟨*X*¹, . . . , *^Xp*⟩ be the free group (of deformation classes of based curves in D_p), $\bar{\pi}$ be the framed free group (deformation classes of based immersed curves), $|\pi|$ and $|\bar{\pi}|$ denote F-linear combinations of cyclic words $(|x_i w| = |w x_i|)$, unbased curves), $A := FA\langle x_1, \ldots, x_p \rangle$ be the free associative algebra, and let $|A| := A/(x_i w = wx_i)$ denote cyclic algebra words.

Theorem 1 (Goldman, Turaev, Massuyeau, Alekseev, Kawazumi, Kuno, Naef). $|\bar{\pi}|$ and $|A|$ are Lie bialgebras, and there is a $Z(\lambda_1(\gamma)) = \lambda_0^a(W(\gamma)) - \lambda_1^a(W(\gamma)) = \hbar \eta^a(W(\gamma))$.

"homomorphic expansion" $W: |\bar{\pi}| \to |A|$: a morphism of Lie bial. "homomorphic expansion" $W: |\bar{\pi}| \to |A|$: a morphism of Lie bialgebras with $W(|X_i|) = 1 + |x_i| + ...$

Further Definitions.
$$
\bullet \mathcal{K} = \mathcal{K}_0 = \mathcal{K}_0^0 = \mathcal{K}(S) :=
$$

 $\mathbb{F}(\text{framed tangles in } PDS_p).$

• \mathcal{K}_t^s :=(the image via $X \to \mathcal{K}$ – \mathcal{K} of tangles in PDS_p that have *t* double points, of which *s* are strand-strand).

E.g.,
$$
\mathcal{R}_5^2(\bigcirc) = \left\langle \underbrace{\overline{\text{M}}\overline{\text{M}}}_{\cdot} \right\rangle / \mathcal{R} \rightarrow \mathbb{X} - \mathbb{X}
$$

• $\mathcal{K}^{s} := \mathcal{K}/\mathcal{K}^{s}$. Most important, $\mathcal{K}^{/1}(\bigcirc) = |\bar{\pi}|$, and there is $P: \mathcal{K}(\bigcirc) \to |\bar{\pi}|.$

• $\mathcal{A} \coloneqq \prod \mathcal{K}_t/\mathcal{K}_{t+1}, \quad \mathcal{A}^s \coloneqq \prod \mathcal{K}_t^s/\mathcal{K}_{t+1}^s \subset \mathcal{A}, \quad \mathcal{A}^s \coloneqq \mathcal{A}/\mathcal{A}^s.$
Fort 1. The Kontexue Integral is an "expension" $Z: \mathcal{K} \longrightarrow$ **Fact 1.** The Kontsevich Integral is an "expansion" $Z: \mathcal{K} \to \mathcal{A}$, compatible with several noteworthy structures.

Fact 2 (Le-Murakami, [\[LM1\]](#page-1-2)). *Z* satisfies the strand-strand HOMFLY-PT relations: It descends to $Z_H: \mathcal{K}_H \to \mathcal{A}_H$, where

$$
\mathcal{K}_H := \mathcal{K} \Big| \Big(\bigwedge^* - \bigwedge^* = (\mathbf{e}^{\hbar/2} - \mathbf{e}^{-\hbar/2}) \cdot \bigwedge^* \Big)
$$

$$
\mathcal{A}_H := \mathcal{A}/(\biguplus = \hbar \bigg| \bigg| \text{ or } \bigg| \bigg| = \hbar \bigg| \bigg| \bigg| \bigg)
$$

= (1, 1)

 $\overline{}$

and deg $\hbar = (1, 1)$

Proof of Fact 2.
$$
Z(\mathcal{X}) - Z(\mathcal{X}) = \mathcal{X} \cdot (e^{h\mathcal{X}/2} - e^{-h\mathcal{X}/2}) = (e^{h/2} - e^{-h\mathcal{X}/2}) =
$$

Key 1. $W: |\bar{\pi}| \to |A|$ is $Z_H^{/1}: \mathcal{K}_H^{/1}(\bigcirc) \to \mathcal{A}_H^{/1}(\bigcirc).$
Key 2 (Schematic). Suppose $\lambda_0, \lambda_1: |\bar{\pi}| \to \mathcal{K}(0)$

Key 2 (Schematic). Suppose $\lambda_0, \lambda_1 : |\bar{\pi}| \to \mathcal{K}(\bigcirc)$ are two ways of lifting plane curves into knots in PDS_p (namely, $P \circ \lambda_i = I$).
Then for $\gamma \in |\bar{\pi}|$, Lemma 1. "Division by \hbar " is well-defined. **Lemma 1.** "Division by \hbar " is well-defined.

$$
\eta(\gamma) := (\lambda_0(\gamma) - \lambda_1(\gamma))/\hbar \in \mathcal{K}_H^{/1}(\bigcirc \bigcirc) = |\bar{\pi}| \otimes |\bar{\pi}|
$$

and we get an operation η on plane curves. If Kontsevich likes λ_0
and λ_1 (namely if there are λ^a with $Z^{(2)}(\lambda_1(\gamma)) = \lambda^a(W(\gamma))$) then and λ_1 (namely if there are λ_i^a with $Z^{2}(\lambda_i(\gamma)) = \lambda_i^a(W(\gamma))$), then
a will have a compatible algebraic companion x^a . *n* will have a compatible algebraic companion n^a :

$$
\eta^{a}(\alpha) := (\lambda_0^{a}(\alpha) - \lambda_1^{a}(\alpha))/\hbar \in \mathcal{A}_H^{/1}(\bigcirc \bigcirc) = |A| \otimes |A|.
$$

For indeed, in $\mathcal{A}_{H}^{/2}$ we have $\hbar W(\eta(\gamma)) = \hbar Z(\eta(\gamma)) = Z(\lambda_0(\gamma)) - Z(\lambda_1(\gamma)) - \lambda^a(W(\gamma)) - \hbar n^a(W(\gamma))$

Example 1. With
$$
\gamma_1, \gamma_2 \in
$$

\n $|\pi|$ (or $|\bar{\pi}|$) set $\lambda_0(\gamma_1, \gamma_2) =$
\n $\tilde{\gamma}_1 \cdot \tilde{\gamma}_2$ and $\lambda_1(\gamma_1, \gamma_2) = \tilde{\gamma}_2$.
\n $\tilde{\gamma}_1$ where $\tilde{\gamma}_2$ are arbitrary lifts of γ_1 . Then η_1 is the Gol

 $\tilde{\gamma}_1$ where $\tilde{\gamma}_i$ are arbitrary lifts of γ_i . Then η_1 is the Gol-
dman bracket! Note that here λ_2 and λ_1 are not welldman bracket! Note that here λ_0 and λ_1 are not welldefined, yet η_1 is.

Example 2. With $\gamma_1, \gamma_2 \in \pi$ (or $\bar{\pi}$) and with λ_0, λ_1 as on the right, we get the "double bra- $\text{cket" } \eta_2 \colon \pi \otimes \pi \to \pi \otimes \pi \text{ (or } \bar{\pi} \otimes \bar{\pi} \to \bar{\pi} \otimes \bar{\pi}).$

Example 3. With $\gamma \in \bar{\pi}$ and $\lambda_0(\gamma)$ its ascending realization as a bottom tangle and $\lambda_1(\gamma)$ its

as a bottom tangle and $\lambda_1(y)$ its α_1 ascending descending descending realization as a bottom tangle, we get $\eta_3: \bar{\pi} \to \bar{\pi} \otimes |\bar{\pi}|$. Closing the first component and anti-symmetrizing, this is the Turaev cobracket. ascending des

Example 4 [\[Ma\]](#page-1-0). With $\gamma \in \bar{\pi}$ and $\lambda_0(\gamma)$ its ascending outer double and $\lambda_1(\gamma)$ its ascending inner double we get $\eta_4: \bar{\pi} \to \bar{\pi} \otimes \bar{\pi}$. After some massaging, it too becomes the Turaev cobracket.

 $h/2 - e^{-h/2}$) $\in \Box$ The rest is essentially **Exercises: 1.** Lemma 1? **2.** \mathcal{A} ?
3. Fact 2? **4.** \mathcal{A}^{1} ? Especially, $\mathcal{A}^{1}(\bigcirc) \cong |A|!$ **5.** Explain **3.** Fact 2? **4.** \mathcal{A}^{11} ? Especially, \mathcal{A}^{11} (\bigcirc) \cong |A|! **5.** Explain

descending

why Kontsevich likes our λ 's. **6.** Figure out η_i^a , $i = 1, ..., 4$.

D·*Z*

Dancso Hogan Liu

