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Abstract. We present a three dimensional realisation of the Goldman-Turaev
Lie biaglebra, and construct Goldman-Turaev homomorphic expansions from
the Kontsevich integral.
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To do list for Zsuzsi
(1) (BIG COMMENT) Section 3.1, reconsider the depth for which we discuss

the Kontsevich integral. Who is our audience?
(2) Section 3.3, read over the added informal descriptions of the operations

to tighten up.
(3) Section 3.3, there is an old note from Jessica about signs. Do we need to

keep that comment, or can we delete it?
(4) Find the reference for Proposition 3.6– Quillen66? Or new reference for

Magnus expansion.
(5) I added a footnote for the Magnus expansion. Do we need it? Should we

say more there?
(6) add a reference for Proposition 3.8.
(7) Section 4, make it clear where the proof for Theorem 4.9 ends.
(8) Section 4, make dummy figure for chord diagram stacking
(9) I reordered the intro section according to Dror’s comments. Have you

read it over? It probably needs proof reading again.

1. Introduction

In 1986, Goldman defined a Lie bracket [Gol86] on the space of homotopy
classes of free loops on a compact oriented surface. Shortly after in 1991, Turaev
defined a cobracket [Tur91] on the same space1. This bracket and cobracket make
the space of free loops into a Lie bialgebra – known as the Goldman-Turaev
(GoTu) Lie bialgebra – which forms the basis for the field of string topology [?]
and has been an object of study from many perspectives.

add referemnces:
chas-sullivan,
kashiwara-vergne, AN,
AT, Formality paper

In this paper we, describe a 3-dimensional lift of the Goldman-Turaev Lie
bialgebra into a space of tangles in a handlebody. We recover the bracket and
cobracket maps as projections of intuitive operations on tangles. We show the
Kontsevich integral is homomorphic with respect to these tangle operations. Our
main result is informally summarised as follows:

Main Result. Let T̃ denote the space of formal linear combinations of tangles
in a punctured disc cross an interval Mp = Dp × I. Projecting to the bottom
Dp × 0, one obtains curves on a punctured disc, and the Goldman–Turaev opera-
tions on these curves are induced2 by the stacking and flipping operations on the
tangles. The Kontsevich integral is a homomorphic expansion for tangles in Mp,
and descends to a Goldman–Turaev homomorphic expansion on Dp.

This result is parallel to Massuyeau’s [Mas18], however, our approach to the
cobracket is significantly different and simpler, hence, more likely to lead to give

1Turaev’s version required factoring out by the constant loop; there is a lift to the full space
of homotopy classes of loops, given a framing on the surface [AKKN20].

2In a specific sense defined in Section 2
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insight into the motivational application descried below. Another related re-
sult is [?], which constructs Goldman–Turaev expansions from the Khnizhnik-
Zamolodchikov connection, a geometric incarnation of the Kontsevich integral.

In more detail, we describe a space T̃ of formal linear combintations of framed
tangles in the handlebody Dp× I and operations on this space, which induce the
Goldman-Turaev operations in the bottom projection to Dp×{0}. The Goldman
bracket arises from the commutator associated to the stacking product in a Con-
way skein quotient of T̃ , defined in Section 4.7, and the Turaev cobracked from
taking the difference between a tangle and its vertical flip, again in a Conway
quotient. We study the associated graded spaces and operations, and show that
the Kontsevich integral is a homomorphic expansion for these tangles, in other
words, intertwines the operations with their associated graded counterparts. We
show that therefore, the Kontsevich integral descends to a homomorphic expan-
sion for the Goldman-Turaev Lie bialgebra. For the flipping operation and the
Turaev cobracket, the precise statements are subtle, and care needs to be taken
with the technical details.

There are other papers
by Turaev and
Massuyeau-Turaev that
are not mentioned here.
There are also some
references that Yusuke
mentioned that we
should include
Turaev’s paper- we can
probably pull some of our
lemmas from his paper,
reference for relationship
with HOMFLY, but he
does not mention the free
associative algebra at all.
Our paper is not a subset
of his. Skein algebra
quantizes — symmetric
lie algebra generated by
the goldman lie
algebra–you can get a
poison algebra, These
skien modules quantize
that poisson algebra

1.1. Motivation. The Kashiwara–Vergne equations originally arose from the
study of convolutions on Lie groups [?]. The equations were reformulated al-
gebraically in terms of automorphisms of free Lie algebras [?], it this form they
are a refinement of the Baker-Campbell-Hausdorff formula for products of expo-
nentials of non-commuting variables.

Kashiwara–Vergne theory has multiple topological interpretations in which
Kashiwara–Vergne solutions correspond to certain invariants – called homomor-
phic expansions – of topological objects. The existence of a homomorphic expan-
sion is also called formality in the literature, this language is inspired by rational
homotopy theory and group theory [?].

One of these topological interpretations is due to the first two authors [BND17],
who showed that homomorphic expansions of welded foams – a class of 4-dimensional
tangles – are in one to one correspondence with solutions to the KV equa-
tions. Recently, a series of papers by Alekseev, Kawazumi, Kuno and Naef
[AKKN20,AKKN18b,AKKN18a] drew an analogous connection between KV solu-
tions and homomorphic expansions for the Goldman-Turaev Lie bialgebra for the
disc with two punctures (up to non-negligible differences in the technical details).
This correspondence was used to generalise the Kashiwara–Vergne equations via
considering different surfaces, including those of higher genus.

In other words, there is an intricate algebraic connection between four-dimensional
welded foams and the GT Lie bi-algebra, which strongly suggests that there is a
topological connection as well. In addition to the inherent interest in tangles in
handlebodies, one goal for this paper is to work towards this connection between
the two-dimensional Goldman–Turaev Lie bialgebra and four-dimesnional welded
foams, by constructing a three-dimensional realisation of the Goldman-Turaev
Lie bialgebra, with homomorphic expansions which descend to Goldman-Turaev
expansions.
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The paper is organised as follows: Section 2 gives a general algebraic framework
for how the Goldman–Turaev operations are induced by tangle operations. In
Section 3 we give a brief overview of the Kontsevich integral and the Goldman
Turaev Lie bialgebra. In Section 4, we define tangles in handlebodies, relevant
operations and Vassiliev filtrations. We identify the associated graded space of
tangles as a space of chord diagrams, and introduce the Conway skein quotient.
In Section ??, we identify the GoTu Lie biaglebra in a low filtration degree, and
prove the main theorem.

Acknowledgements. We are grateful to Anton Alekseev, Gwenel Massuyeau, and
Yusuke Kuno for fruitful conversations. DBN was supported by NSERC RGPIN
262178 and RGPIN-2018-04350, and by The Chu Family Foundation (NYC). ZD
was partially supported by the ARC DECRA DE170101128. NS was supported
by the NSF under Grant No. DMS-1929284 while in residence at the Institute for
Computational and Experimental Research in Mathematics in Providence, RI,
during the Braids Program. We thank the Sydney Mathematical Research Insti-
tute and the University of Sydney for their hospitality, and funding for multiple
research visits.

2. Conceptual summary
sec:conceptsum

We induce the genus zero Goldman-Turaev operations from tangle operations,
in the spirit of “connecting homomorphisms”: this Section is a summary of the
basic approach. We provide some proofs which are not immediate and use the
words homomorphic expansions, and Goldman-Turaev operations without defini-
tion, only mentioning their basic properties which make this conceptual outline
coherent; the definitions follow in Section 3.

In the diagram (2.1), the top and bottom rows are exact and the right and
left vertical maps are zero, and therefore, by minor diagram chasing, the middle
vertical map λ induces a unique map η : C → D, a degenerate case of a connecting
homomorphism. In our applications λ is a difference of two maps λ1 and λ2, whose
values differ in E but coincide in a quotient F .

eq:inducedconnhomeq:inducedconnhom (2.1)
A B C 0

0 D E F

0 λ=λ1−λ2 0

η

In Section 5 we present two constructions which produce the Goldman bracket
and the Turaev cobracket, respectively, as induced homomorphisms η, from cor-
responding tangle operations λ1 and λ2. The following example is a schematic
version of what will become the argument for the Goldman bracket:
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Example 2.1. Let A be an associative algebra, and let {Li} denote the lower
central series of A. That is, L1 := A, and Li+1 := [Li, A]. Then the Li are Lie
ideals, and let Mi = ALi = LiA denote the two-sided ideal generated by Li. The
quotient A/M1 is the abelianisation of A, denoted by Aab. Then we have the
following diagram:

eq:SnakeExampleeq:SnakeExample (2.2)

0 K A
M2

⊗ A
M2

Aab ⊗Aab 0

0 M1
M2

A
M2

Aab 0

0 [·,·] 0

η

Here λ is the algebra commutator, which is indeed the difference between two
maps: the multiplication (λ1) and the multiplication in the opposite order (λ2).
The kernel K of the projection to Aab ⊗ Aab is generated by the subalgebras{
M1
M2

⊗ A
M2
, A
M2

⊗ M1
M2

}
in A

M2
⊗ A

M2
. The map η is a well defined commutator map

Aab ⊗Aab → M1
M2

, given by η(x⊗ y) = [x, y] mod M2. □

The goal of this paper is to construct homomorphic expansions (aka formality
isomorphisms) for the Goldman-Turaev Lie bialgebra from the Kontsevich inte-
gral. In outline, this follows from the naturality property of the construction
above, under the associated graded functor, as follows.

Given a short exact sequence

0 A B C 0,ι π

and a descending filtration on B

B = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ . . . ,

there is an induced filtration on A given by

A = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ . . . ,

where Ai = ι−1(ιA ∩Bi). Similarly, there is an induced filtration on C given by

C = C0 ⊇ C1 ⊇ C2 ⊇ · · · ⊇ Cn ⊇ . . .

where Ci = π(Bn).

Lemma 2.2. If the rows of the diagram (2.1) are exact and filtered so that the
filtrations on the left and right are induced from the filtration in the middle, then
the induced map η is also filtered.

Proof. Basic diagram chasing: given c ∈ Cn, since Cn = π(Bn), there is a b ∈ Bn

such that π(b) = c. Since λ is filtered, λ(b) ∈ En, and λ(b) ∈ ι(D) by exactness.
Since Dn = ι−1(ι(D)∩En), we have that λ(b) = ι(d) for a d ∈ Dn. By uniqueness
of the induced map, d = η(c). □
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The associated graded functor is a functor from the category of filtered algebras
(or vector spaces) to the category of graded algebras (or vector spaces). For a
filtered algebra

A = A0 ⊇ A1 ⊇ A2 ⊇ · · · ⊇ An ⊇ . . . ,

the (degree completed) associated graded algebra is defined to be

grA = Π∞
n=0A

n/An+1.

The associated graded map of a filtered map is defined in the natural way (as in
the proof of Lemma 2.3 below). In general, gr is not an exact functor, but it does
preserve exactness for the special class of filtered short exact sequences where the
filtrations on A and C are induced from the filtration on B:

lem:ExaxtGr Lemma 2.3. If in the filtered short exact sequence

0 A B C 0ι π

the filtrations on A and C are induced from the filtration on B, then the associated
graded sequence is also exact:

0 grA grB grC 0.
gr ι grπ

Proof. Since gr is a functor, we know that grπ ◦ gr ι = 0, hence im gr ι ⊆ ker grπ.
It remains to show that ker grπ ⊆ im gr ι.

Let [b] ∈ Bn/Bn+1, and assume that grπ([b]) = 0. Since grπ([b]) = [π(b)] ∈
Cn/Cn+1, we have grπ([b]) = 0 if and only if π(b) ∈ Cn+1. As the filtration on
C is induced from B, we know that Cn+1 = π(Bn+1). Thus, π(b) ∈ π(Bn+1). Or
in other words, there exists x ∈ Bn+1 such that π(b) = π(x). This implies that
π(b− x) = 0 and hence that b− x ∈ ι(A) by exactness.

Therefore, b = x + ι(a) for some x ∈ Bn+1 and a ∈ A. It follows that [b] =
[ι(a)] = gr ι([a]) in Bn/Bn+1 and hence ker grπ ⊆ im gr ι as required. □

cor:gr_induced_is_unique Corollary 2.4. If the rows of the diagram in Equation 2.1 are exact, and the
filtrations on the left and right are induced from the filtration in the middle, then
the rows of the associated graded diagram are also exact, and the unique connecting
homomorphism is gr η.

(2.3)
0 grA grB grC 0

0 grD grE grF 0

0 grλ 0

gr η

Proof. The exactness of the rows is Lemma 2.3. The induced map is gr η as gr η
makes the diagram commute, and the induced map is unique. □
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An expansion for an algebraic structureX is a filtered homomorphism Z : X →
grX (with special properties as explained in Section 3.1). Thus, if expansions
exist for each of the spaces A through F , we obtain a multi-cube:

eq:Cubeeq:Cube (2.4)

A B C 0

0 D E F

grA grB grC 0

0 grD grE grF

ZA λ ZB

ZC

η

ZD

grλ

gr η

ZE ZF

lem:Naturality Lemma 2.5. If, in the multi-cube (2.4) all vertical faces commute, then so does
the square:

eq:HomExpeq:HomExp (2.5)
D C

grD grC

ZD

η

ZC

gr η

Proof. Follows from the uniqueness of the induced maps. □

In Section 5.1, we will show how the Goldman bracket and Turaev cobracket
each arise as induced maps η, where λ = λ1 − λ2 is a difference of tangle oper-
ations. Therefore the Kontsevich integral therefore induces an expansion for the
Goldman–Turaev operations, and the commutativity of the square (2.5) for each
operation is – by definition – the homomorphicity property of the expansion. This
homomorphicity is our main result. The non-trivial vertical face of the multi-cube
is the one containing λ, and the commutativity of this for each Goldman-Turaev
operation will follow from homomorphicity properties of the Kontsevich integral.
Namely, the Kontsevich integral (standing in for ZB and ZE) intertwines the ap-
propriate tangle operations λ0 and λ1 with their associated graded counterparts.
This is the idea behind the approach of this paper.

3. Preliminaries: Homomorphic expansions and the
Goldman-Turaev Lie bialgebra

sec:Prelims
Should we say formality
instead of/in addition to
homomorphic expansion?
Add the reference to the
formality/ Lie algebra
paper.

subsec:FramedKon
3.1. Homomorphic expansions and the framed Kontsevich integral. The
Kontsevich Integral is the knot theoretic prototype of a homomorphic expansion.
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Homomorphic expansions (a.k.a. formality isomorphisms, well-behaved universal
finite type invariants) provide a connection between knot theory and quantum
algebra/Lie theory. We begin with a short review of homomorphic expansions
from an algebraic perspective, which is outlined – in a slightly different, finitely
presentated case – in [BND17, Section 2]. Kontsevich’s original construction
gives an invariant of unframed links; for a detailed introduction, we recommend
[CDM12, Section 8], or [Kon93,BN95,Dan10]. In this paper we work primarily
with framed links and tangles, thus we briefly review the framed versions of the
Vassiliev filtration and Kontsevich integral; for more detail see [CDM12, Sections
3.5 and 9.1] and [LM96].

3.1.1. Homomorphic expansions. Let K denote a given set of knots, links or tan-
gles in R3 (e.g., oriented knots), and allow formal linear combinations with coef-
ficients in C. For links and tangles, allow only linear combinations of embeddings
of the same skeleton3. The Vassiliev filtration – defined in terms of resolutions of
double points  = !−" – is a decreasing filtration on this linear extension:

CK = K0 ⊇ K1 ⊇ K2 ⊇ ...

The degree completed associated graded space of CK with respect to the Vas-
siliev filtration is

A :=
∏
n≥0

Kn/Kn+1.

An expansion is a filtered linear map Z : CK → A, such that the associated
graded map of Z is the identity grZ = idA.

Usually, K is equipped with additional operations: examples are knot con-
nected sum, tangle composition, strand orientation reversal, etc. Homomorphic
expansions are compatible with these operations, and thus allow for a study of K
via the more tractable associated graded spaces.

Specifically, an expansion is homomorphic with respect to an operation m, if it
intertwinesm with its associated graded operation on A. That is, Z◦m = grm◦Z.
A crucial step towards making effective use of this machinery is to get a handle
on the space A in concrete terms: for example, in classical knot theory, A has a
combinatorial description as a space of chord diagrams [CDM12, Chapter 4].

There is a natural map ψ from chord diagrams with i chords to Ki/Ki+1,
defined by “contracting chords” as in Figure 1. It is not difficult to establish that
ψ is surjective. In the case of classical (oriented, unframed) knots, there are two
relations in the kernel of ψ: the 4-Term (4T) and Framing Independence (FI)
relations, shown in Figure 2. In fact, these two relations generate the kernel,

3The skeleton of a knotted object is the underlying combinatorial object. For example:
the skeleton of a link is the number of components; the skeleton of a braid is the underlying
permutation; the skeleton of a tangle is the number of strands, connectivity, and number of
circle components. In these contexts CK is a disjoint union of vector spaces, rather than a
single vector space.
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7→
ψ

Figure 1. Example of ψ mapping a chord diagram to a knot
with double points by contracting the chords. The right-hand
side represents a well-defined element in K3/K4.fig:psionchord

and ψ descends to an isomorphism on the quotient; this, however, is significantly
harder to prove.

0
FI
=0

4T
=−++−

Figure 2. The 4T and FI relations, understood as local relations:
the strand(s) are part(s) of the skeleton circle, and the skeleton
may support additional chords outside the picture shown.fig:4TFI

The key technique is to construct an expansion as in the following Lemma,
[BND17, Proposition 2.7]:

Lemma 3.1. [BND17] Let CK be a filtered vector space (or union of vectorlem:assocgradyoga
spaces), and A the associated graded space of CK. Let C be a “candidate model” for
A: a graded linear space equipped with a surjective homogeneous map ψ : C → A.
If there exists a filtered map Z : CK → C, such that ψ ◦ grZ = idA, then ψ is an
isomorphism and ψ ◦ Z is an expansion for K.

CK C A C

A A

Z

ψ

grZ

ψ◦grZ=idA ψ
gr

In other words, once one finds a candidate model C for A, finding an expansion
valued in C also implies that ψ is an isomorphism. In classical Vassiliev theory, K
is the space of oriented knots, C is the space of chord diagrams, and a C-valued
expansion is the Kontsevich integral [Kon93].
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3.1.2. Framed theory. In this paper we work with framed links and tangles, so we
give a brief introduction to the framed version of the general theory summarised
in the previous section. For simplicity, we consider links for now.

Let K̃ denote the set of framed links in R3: that is, links along with a non-zero
section of the normal bundle. A link diagram is interpreted as a framed link using
the blackboard framing. The Reidemeister move R1 move changes the blackboard
framing, and by ommitting it, one obtains a Reidemeister theory for framed links.
In analogy with a double point, a framing change is defined to be the difference

:= − .

The framed Vassiliev filtration is the descending filtration

K̃ = K̃0 ⊇ K̃1 ⊇ K̃2 ⊇ ...

where K̃i is linearly generated by knots with at least i double points or framing
changes. The degree completed associated graded space of K̃ with respect to the
framed Vassiliev filtration is

Ã :=
∏
n≥0

K̃n/K̃n+1.

A natural first guess for a combinatorial description of Ã is in terms of chord

diagrams with “framing change markings” on the skeleton, graded by the num-
ber of chords and markings. There is a natural surjective graded map ψ̃ from
marked chord diagrams onto Ã, which is contracts chords as in the classical case,

and which replaces each marking with a framing change . The kernel of ψ̃
includes the 4T relation as before.

In place of the FI relation ( =0), a weaker relation arises from the equality

− = in K̃. In fact, = − = ( − )+( − ), and − = −
modulo K̃2. In other words, the following relation is in the kernel of ψ̃:

= 2 .

Therefore, it is not necessary to have dedicated notation for the framing change

markings, since = 1
2 . The candidate model for the associated graded space is

simply chord diagrams modulo the 4T relation, and no FI relation. We denote
this space by C̃.

To show that ψ̃ : C̃ → Ã is an isomorphism, it is enough to construct a C̃-valued
expansion and use Lemma 3.1. This C̃-valued expansion is the framed version Z̃
of the Kontsevich integral. For details of this construction see [CDM12, Section
9.1], or [LM96,Gor99].

DROR HAS READ TO
HERE, Dror comments
on 3.1 have been
implemented by Zsuzsi
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∂0
∂1 ∂2 ∂3

ξ

ν

Figure 3. D3 with an immersed loop from • to ∗ with initial
tangent vector ξ and terminal tangent vector −ξ. The path along
the boundary from ∗ to • is ν.fig:DP

γ1 · γ2

γ1 γ2

1 ∈ π̃ γ γ−1

Figure 4. The group structure on π̃.fig:DPGroup

subsec:IntroGT
3.2. The Goldman-Turaev Lie bialgebra. In order to define the Goldman-
Turaev Lie bialgebra, we need to recall some basic definitions and notation.

LetDp denote p-punctured disc, with p+1 circle boundary components ∂0, ∂1, ..., ∂p,
embedded in the complex plane so that ∂0 is the outer boundary, as in Figure 3.
In particular, the plane-embedding specifies a framing (trivialisation of the tan-
gent bundle) on Dp, and thus immersed loops in Dp are equipped with a notion
of rotation number.

Let π = π1(Dp, ∗) denote the fundamental group of Dp with basepoint ∗ ∈ ∂0.
We denote by Cπ the group algebra of π.

We also need to consider based paths. Let • and ∗ be two “nearby” basepoints
on ∂0 and ξ be the direction of the inward pointing normal vector to ∂0 at •
and ∗. Let π̃ = π̃•∗ denote the set of regular homotopy classes of immersed
curves γ : ([0, 1], 0, 1) → (Dp, •, ∗), so that γ̇(0) = ξ, and γ̇(1) = −ξ, as shown
in Figure 3. Note that the rotation number is invariant under regular homotopy.
Recall that π̃ is in fact a group, illustrated in Figure 4 and defined as follows:

(1) Let ν denote the path from ⋆ to • along ∂0. The group product γ1 · γ2 is
the smooth concatenation of γ1 with ν followed by γ2.
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(2) The group identity is the class of paths which, when composed with ν,
become contractible loops of rotation number zero.

(3) The inverse of γ is the concatenation ν γ ν∗ where the overline denotes the
reverse path, and ν∗ includes a negative twist (to ensure that the rotation
number of γ · γ−1 is 0). The beginning and end of the path is adjusted in
an epsilon neighbourhood of the base points to have inward and outward
pointing tangent vectors, as in Figure 4.

Denote by Cπ̃ the group algebra of π̃. There is a forgetful map π̃ → π which
maps γ to the (non-regular) homotopy class of γ ν. This linearly extends to a
forgetful map Cπ̃ → Cπ.

For an algebra A we denote by |A| the linear4 quotient A/[A,A], where [A,A]
denotes the subspace spanned by commutators [x, y] = xy − yx for x, y ∈ A. We
denote the quotient (trace) map by | · | : A → |A|. In our context, |Cπ| has an
explicit description as the C-vector space generated by homotopy classes of free
loops in Dp. In a similar but more subtle fashion, |Cπ̃| is spanned by regular
homotopy classes of immersed free loops, where |γ| denotes the class of γν as a
free immersed loop.

The Goldman–Turaev Lie bialgebra comes in two flavours: original and en-
hanced. The original construction of the Goldman bracket is a Lie bracket on |Cπ|.
However, the original Turaev cobracket is only well-defined on |Cπ| = |Cπ|/C1,
the linear quotient by the homotopy class of the constant loop. The space |Cπ|
is a Lie bialgebra with this cobracket and the Goldman bracket, which descends
from |Cπ|. There is an enhancement [AKKN18b] of the cobracket, which pro-
motes it to |Cπ|, thereby making |Cπ| a Lie bialgebra under the Goldman bracket
and the enhanced cobracket. In [AKKN18b] this enhancement is necessary in
order to establish the relationship between the Goldman-Turaev Lie bialgebra
and Kashiwara–Vergne theory. To define the enhanced cobracket, a curve in |Cπ|
is lifted to an immersed curve with a fixed rotation number. Below we review
the definitions of the Goldman bracket and the enhanced version of the Turaev
cobracket.

The Goldman Bracket sums over smoothing intersections between two free
loops. For a free loop α in |Cπ| and a point q on α, denote by αq the loop α
based at q.

def:bracket Definition 3.2 (The Goldman bracket). Let α, β ∈ |Cπ| be free loops with ho-
motopy representatives chosen so that there are only finitely many transverse
double intersections between α and β. The Goldman bracket [·, ·]G : |Cπ|⊗|Cπ| →
|Cπ| is given by

[α, β]G := −
∑
q∈α∩β

εq|αqβq|,

4Not to be confused with the abelianisation of A. In particular, |A| does not inherit an
algebra structure from A.
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p
γ̇p1γ̇p2

µ

⊗

Figure 5. Example of the self intersection map µ where ϵp = −1.fig:defmu

where εq = ε(α̇q, β̇q) ∈ {±1} is the local intersection number of α and β at q,
αqβq is the concatenation of αq and βq, and the extension to |Cπ| is linear. Then
one easily checks that [·, ·]G is a Lie bracket on |Cπ|.

The sign here (with the
minus sign in front)
matches with AKKN
genus 0, but is the
opposite of AKKN higher
genus and Goldman’s
original definition. Our
current multiplication
and bracket matches the
sign here, so if we change
the sign then we should
change the stacking order
of our multiplication.

The original definition of the Turaev cobracket is similar, but uses self intersec-
tions of a curve in place of the intersections between two curves. Unfortunately, it
is not well-defined with respect to the Reidemeister 1 relation for free homotopy
curves, hence the need for the enhancement. We construct the (enhanced) co-
bracket via a self-intersection map for based curves, as in [AKKN18b, Section 5.2];
this definition lends itself well to direct comparison with the three-dimensional
operations of Section 5. For a based curve γ in Cπ, the idea is to “snip off” por-
tions of γ at self intersection points to get two curves, one of which is based and
the other free. Figure 5 shows an example.

def:mu Definition 3.3 (The self-intersection map). For γ ∈ Cπ, let γ̃ ∈ Cπ̃ denote a
path such that γ̃ν is homotopic to γ; and such that γ̃ has only transverse double
points, and rot(γ̃) = 1/2 (hence, rot(γ̃ν) = 0). Let γ̃ ∩ γ̃ denote the set of double
points. The self intersection map µ is defined as folows:

µ : Cπ → |Cπ| ⊗ Cπ

µ(γ) = −
∑
p∈γ̃∩γ̃

εp|γ̃tp1tp2 | ⊗ γ̃0tp1 γ̃t
p
21
,

where tp1 and tp2 are the first and second time parameter in [0, 1] where γ̃ goes
through p; where γ̃rs denotes the path traced by γ̃ from t = r to t = s; the sign
εp = ε

(
˙̃γ(tp1),

˙̃γ(tp2)
)
∈ {±1} is the local self-intersection number; and the formula

extends to Cπ linearly.

The Turaev cobracket is obtained from µ by closing off the path component
and making the tensor product alternating: this descends to a map on |Cπ|, as
follows.

Definition 3.4 (The Turaev co-bracket). The Turaev cobracket δ is the unique
linear map which makes the following diagram commute, where Alt(x ⊗ y) =
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x⊗ y − y ⊗ x = x ∧ y:

Cπ |Cπ| ⊗ Cπ |Cπ| ⊗ |Cπ|

|Cπ| |Cπ| ∧ |Cπ|

µ

| · |

1⊗ | · |

Alt

δ

3.3. Associated graded Goldman-Turaev Lie bialgebra. There I-adic fil-
tration on Cπ is the filtration by powers of the augmentation ideal I = ⟨{α −
1}α∈π⟩:

Cπ = I0 ⊇ I ⊇ I2 ⊇ ...

By the 1930’s work of Magnus [Mag35], the associated graded algebra of Cπ with
respect to this filtration is the degree completed free algebra FA = FA⟨x1, · · · , xp⟩:
Proposition 3.5. Given the set of standard generators {γi}pi=1 for π, there is
an isomorphism of algebras grCπ → FA and the exponential expansion φ(γ±1

i ) =
e±xi is a homomorphic expansion.

The I-adic filtration of Cπ descends to a filtration on |Cπ|:
|Cπ| = |I0| ⊇ |I| ⊇ |I2| ⊇ ...

The completed associated graded vector space for |Cπ| with respect to this filtra-
tion is, by definition

gr |Cπ| =
∞∏
n=0

|In|/|In+1|.

There is an isomorphism gr |Cπ| ∼= |FA |, where |FA | denotes the linear quotient
|FA | = FA /[FA,FA], and the exponential expansion descends to a homomorphic
expansion for |Cπ|. The vector space |FA | is spanned by cyclic words in letters
x1, · · · , xp, that is, words modulo cyclic permutations of the letters.

Therefore, |FA | carries the structure of a Lie bialgebra under gr[·, ·]G and gr δ
[AKKN18a, Section 3]. Note that the Goldman bracket and the Turaev co-bracket
are not strictly filtered maps, as they both shift filtered degree down by one5. For
example, if x ∈ |Ir| and y ∈ |Is|, then [x, y]G ∈ |Ir+s−1|. Correspondingly, the
associated graded operations are maps of degree −1.

Figure 6 shows a schematic calculation of the graded Goldman bracket, with
cyclic words represented diagrammatically as letters along a circle. The graded
Goldman bracket sums over matching pairs of letters in z and w, joins the circles
at the matching letter, and takes the difference of the two ways of including
only one copy of the letter in the new cyclic word. Stated algebraically, this is
summarised as follows:

5In [AKKN18a, Sections 3.3, 3.4] the down-shifts are by up to two filtered degrees, as the
generating curves around genera and those around boundary components carry different weights.
In our genus zero setting this translates to a degree shift of −1.
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x x

grG, =
∑

matching
pairs

−
x

x

Figure 6. A schematic diagrammatic example of the graded
Goldman bracket.fig:grbracket

x x

x x

grµ∑
pairing

cuts

Figure 7. A schematic diagrammatic example of the graded Self-
intersection map, grµ.fig:grmu

Proposition 3.6. [AKKN18a, Section 3.3] Let z = |z1 · · · zl| and w = |w1 · · ·wm|
be two cyclic words in |FA |. The graded Goldman bracket

gr ([−,−]G) = [−,−]grG : |FA | ⊗ |FA | → |FA |
is given by:

[z, w]grG =
∑
j,k

δzj ,wk
(|w1 . . . wk−1zj+1 . . . zlz1 . . . zjwk+1 . . . wm|−

|w1 . . . wk−1zj . . . zlz1 . . . zj−1wk+1 . . . wm|),
where δzj ,wk

is the Kronecker delta.
we should define the
associated grade µ as
well - it’s just like the
cobracket but easier

Figure 7 shows a schematic diagrammatic calculation of the graded self-intersection
map µ, as a sum over pairing cuts. A pairing cut identifies two matching letters in
a word, and splits the word along a chord connecting these matching letters. The
graded self-intersection map outputs the tensor product of the resulting cyclic
word and the remainder of the associative word. In formulas:

Proposition 3.7. [AKKN18a, Section 3.4] Let w = w1 . . . wm ∈ Asp. The
graded self-intersection map

gr(µ) = µgr : FA → |FA | ⊗ FA

is given by:

µgr(w) =
∑
j<k

δwj ,wk
(|wj . . . wk−1| ⊗ w1 . . . wj−1wk+1...wm−

|wj+1 . . . wk−1| ⊗ w1 . . . wjwk+1 . . . wm),

where δwj ,wk
denotes the Kronecker delta.
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x

x

x − x

Figure 8. An example pairing cut of a cyclic word as a term in
the graded Turaev cobracket.Figure is incorrectfig:paircut

Figure 8 shows a schematic diagrammatic definition of the graded Turaev co-
bracket, again as a sum over pairing cuts. A pairing cut in a cyclic word identifies
a pair of coinciding letters, and cuts the cycle into two cycles along the chord con-
necting the matching letters. To obtain the cobracket, one takes a sum of wedge
products of the resulting split cyclic words, adding one copy of the coinciding
letter to either side, as shown in Figure 8 and expressed in formulas below:

Proposition 3.8. [AKKN18a, Section 3.4] Let w = w1 . . . wm ∈ |Asp|. The
graded Turaev cobracket

gr(δ) = δgr : |FA | → |FA | ∧ |FA |

is given by

δgr(w) =
∑
j<k

δwj ,wk
(|wj . . . wk−1| ∧ |wk+1 . . . wmw1 . . . wj−1|+

|wk . . . wmw1 . . . wj−1| ∧ |wj+1 . . . wk−1|),

where δwj ,wk
denotes the Kronecker delta6.

4. Expansions for tangles in handlebodies
sec:TangleSetUp

4.1. Framed oriented tangles. This section introduces the space CT̃ of framed,
oriented tangles in a genus p handlebody, with formal linear combinations. Our
main result – proven in Section 5 – is that homomorphic expansions on CT̃
descend to homomorphic expansions on the Goldman-Turaev Lie biagebra.

Let Mp denote the manifold Dp × I where Dp is a disc in the complex plane
with p points removed. While Mp is not a compact manifold, knot theory in Mp

is equivalent to knot theory in a genus p handlebody. For the purpose of the
Kontsevich integral, we identify Dp with a unit square in the complex plane with
p points removed, so Mp can be drawn as a cube with p vertical lines removed;
we call these lines poles, as shown in the middle in Figure 9. We refer to Dp×{0}
as the “floor” or “bottom”, and Dp×{1} as the “ceiling” or “top”. The “back wall”
is the face [i, i+ 1]× [0, 1]. We refer to the i ∈ C direction as North.

in figure 9 right hand
picture, the end points
don’t quite line up 6Apologies for the notation clash.
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Figure 9. An example of a tangle in M3, drawn first in a han-
dlebody, then in a cube with poles, and lastly as a tangle diagram
projected to the back wall of the cube.fig:polestudio

def:tangle Definition 4.1. An oriented tangle T in Mp is an embedding of an oriented
compact 1-manifold

(S, ∂S) ↪→ (Mp, Dp × {0} ∪Dp × {1}).
The interior of S lies in the interior of Mp, and the boundary points of S are
mapped to the top or bottom. Oriented tangles in Mp are considered up to
ambient isotopy fixing the boundary. We denote the set of isotopy classes by T .
An example is shown in Figure 9.

Definition 4.2. A framing for an oriented tangle T in Mp is a continuous choice
of unit normal vector at each point of T , which is fixed pointing in the North
direction (i ∈ C) at outgoing boundary points, and South at incoming boundary
points. Framed oriented tangles in Mp are considered up to ambient isotopy fixing
the boundary. We denote the set of isotopy classes of framed oriented tangles by
T̃ .

Henceforth, any tangle is assumed to be framed and oriented unless otherwise
stated. The skeleton of a tangle is the underlying combinatorial information with
the topology forgotten:

def:skeleton Definition 4.3. The skeleton σ(T ) of a tangle T = (S ↪→Mp) – see Figure 10 –
is the set of tangle endpoints Pbot ⊆ Dp × {0} and Ptop ⊆ Dp × {1}, along with

(1) A partition of Pbot∪Ptop into ordered pairs given by the oriented intervals
of S.

(2) A non-negative integer k: the number of circles in S.
Maybe it would be better
to define Pbot, Ptop ⊆ Dp

and then say Pbot × {0}
and P⊤ × {1} are the
tangle endpoints. Then it
would make descriptions
of tangle operations
easier, as well as the info
in figure 9.

The skeleton of a framed tangle is the same as the skeleton of the underlying
unframed tangle. The set of framed tangles in Mp with skeleton S is denoted
T̃ (S). For example, T̃ ( ) is the set of framed knots in Mp.

The linear extension of T̃ (S), denoted CT̃ (S), is the vector space of C-linear
combinations of tangles in T̃ (S). We denote by CT̃ the disjoint union ⊔S T̃ (S)
over all skeleta S, identified at 0. Tangles with different skeleta cannot be linearly
combined.
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(1, 0) (5, 0) (1, 0) (5, 0)

Figure 10. On the left is a tangle in M2, and on the
right is schematic diagram of the skeleton of the tan-
gle. The skeleton of the tangle is the combinatorial data
given by the following set of order pairs and the integer 1:
{[((2, 0), 0), ((1, 0), 0))], [((3, 0), 0), (4, 0), 0))], [((5, 0), 1), (5, 0), 0))], 1}

.fig:skeleton

One may represent tangles in Mp using tangle diagrams in (at least) two dif-
ferent ways: by projecting to the back wall of Mp or to the floor.

Projecting to the back wall, an ℓ-component tangle in Mp can be diagrammat-
ically represented as a tangle diagram with p straight vertical poles, and ℓ tangle
strands of circle and interval components. The strands pass over (in front of) and
under (behind) the poles and other strands, as shown on the right in Figure 9.
The poles are equipped with an orientation coming from the parametrisation in
Mp

∼= Dp× I, by our drawing conventions this means they are oriented upwards.
By Reidemeister’s theorem, T̃ is in bijection with such diagrams modulo the
Reidemeister moves R2 and R3. (No R1, as the tangles are framed.)

By projecting instead to the floor Dp×{0}, a tangle in Mp is represented by a
tangle diagram in Dp. The R2 and R3 moves continue to apply. The endpoints
of the tangle are fixed: bottom endpoints are denoted by dots, top endpoints are
denoted by stars. Strands of the tangle diagram can pass over bottom endpoints,
or under top endpoints, as shown in Figure 11. However, the strands cannot pass
over the punctures in Dp.

sec:opsonT
4.2. Operations on T̃ . There are several useful operations defined on T̃ . These
operations extend linearly to CT̃ , and are used in Section 5 to relate quotients of
CT̃ to the Goldman-Turaev Lie bialgebra.

• Stacking product: Given tangles T1, T2 ∈Mp, if the top endpoints of σ(T1)
match the bottom endpoints of σ(T2) in Dp, and the orientations on the
strands of T1 and T2 agree at the matching endpoints, then we can stack
T2 on top of T1 and shrink the height to get a new tangle T1T2 ∈Mp.

• Strand addition: The strand addition operation adds a non-interacting
additional strand to a tangle T at a point q ∈ Dp to get a new tangle
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−→

= =

Figure 11. An example of a tangle in M3 projected to the bot-
tom floor of the cube. Strands of a tangle diagram can pass over
bottom endpoints (dot) or under top endpoints (star).fig:BottomDiagram

flip−−→

Figure 12. A tangle in M2 and its flipfig:flip

T⊔q ↑. More precisely, pick a contractible U ⊆ Dp such that T is con-
tained entirely in U × [0, 1] and a point q ∈ Dp outside of U . The tangle
T⊔q ↑ is T together with an upward-oriented vertical strand q × I at q.

• Strand orientation switch: This operation reverses the orientation of a
given strand of the tangle.

• Flip: Given a tangle T inMp, the flip of a tangle T inMp, denoted T , is the
mirror image of T with respect to the ceiling, as shown in Figure 12. When
T is flipped, each top boundary point (q, 1) becomes a bottom boundary
point (q, 0), and vice versa. The orientations and framing of the strands
of T are reflected along with the strands. However, the orientations of the
poles remain ascending. Equivalently, we can define the flip operation as
reversing the parametrisation of I in Mp

∼= Dp × I. This, in effect, flips
the orientation of the poles but changes nothing else.

In section 5.1, we relate commutator of tangles with respect to stacking, given
by [T1, T2] = T1T2 − T2T1, to the Goldman bracket, and in section 5.2 we relate
the flip operation to the Turaev cobracket.
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sec:t-filtration
4.3. The t-filtration on T̃ and the associated graded Ã. There are different
filtrations on the space CT̃ that one might consider in setting up a Vassiliev theory.
In line with classical notation of Vassiliev invariants, we denote by a double point
the difference between an over-crossing and an under-crossing:

= −

In the context of tangles in Mp, double points come in two varieties: pole-strand,
if the crossing occurs between a pole and a tangle strand, and strand-strand, if
the crossing occurs between two tangle strands.

The main filtration we consider on CT̃ is the filtration by the total number of
double points of either type, as well as strand framing changes (as described in
Section 3.1). We call this the total filtration, or simply t-filtration, and write it as

CT̃ = T̃0 ⊇ T̃1 ⊇ T̃2 ⊇ T̃3 ⊇ · · ·

where T̃t is the set of linear combinations of framed tangle diagrams with at least
t total double points and strand framing changes.

Definition 4.4. The associated graded space of CT̃ with respect to the total
filtration is

Ã := grCT̃ =
∏
t≥0

T̃t/T̃t+1.

The degree t component of Ã is Ãt := T̃t/T̃t+1.

rem:2frame=double Remark 4.5. Modulo T̃2, = − = − . As a result, in Ã, a framing change
can always be represented as 1

2 a double point as

= − = ( − ) + ( − ) = 2 .

As in classical Vassiliev theory (cf. section 3.1), the associated graded space Ã
has a combinatorial description in terms of chord diagrams.

Definition 4.6. A chord diagram on a tangle skeleton is an even number of
marked points on the poles and skeleton strands, up to orientation preserving
diffeomorphism, along with a perfect matching on the marked points – that is,
a partition of marked points into unordered pairs. In diagrams, the pairs are
connected by a chord, indicated by a dotted line, as in Figure 13(A).

def:admissible Definition 4.7. A chord diagram is admissible if all chords connect strands to
strands, or strands to poles. That is, there are no pole-pole chords in an admissible
diagram, see Figure 13(A) for an example.

def:cdspace Definition 4.8. The space D(S) of admissible chord diagrams on a diagram S is
the space of C-linear combinations of admissible chord diagrams on the skeleton
S factored out by admissible 4T relations, shown in Figure ??. Admissible 4T
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(A) Two chord diagrams: an admissible one (left) that doesn’t contain any pole-pole
chords, and non-admissible one (right) that does contain a pole-pole chord.fig:AdmissibleNonAdmissible

= 0+ − −

(B) The 4T relation, which is admissible if at most one of the three skeleton components
is a pole.fig:Admissible 4T

Figure 13. Examples of admissible and non-admissible chord di-
agrams, and the 4T relationfig:admissible

relations are 4T relations in the classical sense, subject to the condition that all
four terms are admissible7. That is,

Do we need the concept
of “admissible 4T”? Since
4T is a relation, so just
saying “admissible chord
diagrams mod 4T” would
only apply 4T to
admissible diagrams?

D(S) =

{
linear combinations of admissible chord diagrams on S

}{
admissible 4T relations

}
The space D(S) is a graded vector space, where the degree is given by the number
of chords. Denote the degree t component of D(S) by Dt(S). Let D be the
disjoint union ⊔SD(S), identified at 0. We denote the degree t component of D
by Dt = ⊔SDt(S).

There is a familiar isomorphism from classical finite type theory

ψ : D → Ã.
In degree t, ψt : Dt → T̃t/T̃t+1, is defined as before by contracting chords to double
points, as shown in Figure 14. This may create other crossings, but modulo T̃t+1

it does not matter which skeleton component is over or under at these crossings.
add reference for
theorem?

thm:tassocgraded Theorem 4.9. The map ψ : D → Ã is an isomorphism.

We prove that ψ is an isomorphism by showing that it is well-defined and
surjective, then using lemma 3.1 to show that it is an isomorphism.

Lemma 4.10. The map ψ is well-defined and surjective.

Proof. To show ψ is well-defined, it suffices to show that admissible 4T relations
in Dt are in the kernel of ψ. This is shown in Figure 15. For surjectivity, a framing

7Equivalently, a 4T relation is admissible if at most one of the three skeleton components
involved is a pole.
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7→
ψ

Figure 14. Example of ψ with the right hand side viewed as an
element of T̃3/T̃4. Different choices of over or under crossings with
the poles only differ by elements of T̃4.fig:psi

ψ − + + − = − + + −

= − = 0

Figure 15. The proof that ψ : D → Ã is well defined. The
figure is understood locally: If the figure is a map in the degree t
component, then the chord diagrams have t− 2 other chords that
are not shown but in the same position throughout all four terms,
and similarly, the tangles have t− 2 other double points that are
not shown, but in the same positions throughout all the terms.fig:psicomputation

change in Ã can always be written as one half a double point, as described in
Remark 4.5. So all framing changes are in the image of ψ, and ψ is surjective.

□

thm:Zwelldefined Lemma 4.11. The Kontsevich integral Z is a well-defined filtered map from CT̃
to D such that ψ ◦ grZ = idÃ.

Proof. The image of Z on an element in CT̃ will be a chord diagram on a skeleton
with p poles and some number of circles. Since the poles in Mp are parallel, any
pair of points (zi, z′i) on the poles will be constant, the form dzi−dz′i = 0, and the
contribution to the integral will be zero. Therefore chord diagrams in the image
of Z don’t contain pole-pole chords, so they are always admissible. So Z indeed
always lands in D.

It remains to show that ψ ◦ grZ = idÃ.
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Figure 16. DUMMY IMAGE!!! placeholder for picture of chord
diagram stacking and flipfig:chorddiagoperations

CT̃ D Ã D

Ã Ã

Z

ψ

grZ

ψ◦grZ=idÃ ψ
gr

Recall that for a filtered map f : A → B, the associated graded gr f : grA →
grB is defined on graded components by [a] ∈ At/At+1 7→ [f(a)] ∈ Bt/Bt+1. We
consider grZ : Ã → D. Let [T ] ∈ T̃t/T̃t+1 so that is T is a tangle in Mp with at
least t double points. Note that it’s always possible to pick such a representative,
since a framing change can be written as 1

2 times a double point in T̃t/T̃t+1. Then
Z(T ) is a sum of chord diagrams with e

C
2 − e−

C
2 at each chord C corresponding

to each double point in T . All terms with degree less than t are zero, so the value
of grZ(T ) depends only on the degree t term of Z(T ). The degree t term is a
single chord diagram with a single chord for each double point, so applying ψ to
this turns all the chords back to double points, which up to crossing changes in
T̃t+1, is just [T ]. Therefore ψ grZ = idÃ. Since ψ grZ = idÃ. □

The next corollary is immediate from lemma 3.1.

Corollary 4.12. The map ψ : D → Ã is an isomorphism and Z is an expansion
for T̃ .

Now it is established that Ã can be identified with the space of admissible chord
diagrams D. For a skeleton S, define Ã(S) to be the space of admissible chord
diagrams on the skeleton S, so that Ã(S) is the associated graded of CT̃ (S). For
example, Ã( ) is the associated graded of CT̃ ( ), the space of knots in Mp.

4.4. Operations on Ã. The operations stacking and flip on T induce operations
by the same names on Ã. In view of Theorem 4.9, we give descriptions of these
operations using chord diagrams.

The operation stacking is given by stacking D1 on top of D2 by concatenating
the the top ends of the poles in D2 to the bottom ends of the poles in D2 to
get D1D2, see Figure 16. It is clear from the definition of ψ that this is the
correct chord diagram description of stacking, and as in T , is only defined when
the endpoints of D1 and D2 match appropriately.
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The operation flip reflects a chord diagram with respect to a “mirror on the
ceiling", reverses the orientations of the poles so that they are the same as they
were originally, and adds a factor of (−1)m, wherem is the total number of marked
points on the poles. The factor of (−1)m comes from the fact that reversing the
orientation of one strand at a double point is the same as multiplying by a factor
of −1. See Figure 16.

describe the associated
graded operations of all
the tangle operationsprop:Zhomom Proposition 4.13. The Kontsevich integral Z is homomorphic with respect to

stacking, strand additions and flips.

Proof. It is clear for stacking and strand addition. When the orientation of the
poles are reversed, every chord diagram DP in the output of the Kontsevich
integral will be multiplied get (−1)m, where m is the total number of chord
endings on poles, because m points in P will change whether they are on a
descending arc or not, so P↓ will change by m mod 2.

□
sec:s-sfiltration

4.5. The s-filtration on T̃ and Ã. As described in Section 4.3, the space CT̃
(and therefore Ã) has a total filtration given by strand framing changes and double
points of either type, strand-pole and strand-strand. In this section we look at
a second filtration on CT̃ and Ã, where we still look at strand framing changes,
but only consider the number of strand-strand double points. This filtration will
be called the strand filtration, or simply s-filtration. The s-filtration is given by

CT̃ = T̃ 0 ⊇ T̃ 1 ⊇ T̃ 2 ⊇ T̃ 3 ⊇ · · ·
where T̃ s ⊆ CT̃ are linear combinations of link diagrams with at least s strand
framing changes and strand double points.

Remark 4.14. We do not consider the full associated graded of CT̃ with respect
to the s-filtration, but instead use it to identify the Goldman-Turaev spaces in
low degrees in Section 5. The associated graded of CT̃ with respect to the s-
filtration has been studied by Habiro and Massuyeau in [HM21], where they
consider “bottom tangles”. Note the language – if we project to the “bottom”
instead of the “back wall”, then all double points are of type strand-strand, so the
s-filtration is just the usual Vassiliev filtration in the bottom projection.

The s-filtration also induces a filtration on Ã as follows. Combining the nota-
tions for the t- and s-filtrations, let T̃ s

t denote the set of linear combinations of
tangle diagrams in CT̃ that have at least t double points, at least s of which are
strand-strand.

def:filtrationQuotientNotation Definition 4.15. The s-filtered component of Ã denoted Ã≥s :=
∏

T̃ s
t /T̃ s

t+1 is
the set of linear combinations of chord diagrams with at least s strand-strand
chords, or rather at least s chords between the non-pole skeleton components.

Note that the number of s chords is not a grading on Ã because the 4T relation
is not homogeneous with respect to strand-strand chords.
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prop:ZrespectsS Proposition 4.16. The Kontsevich integral is a filtered map with respect to the
s-filtration.

Proof. This follows immediately from Theorem 4.11: Z is an expansion with
respect to the total filtration, and strand-strand double points correspond to
strand-strand chords via the identification of the associated graded space as a
space of chord diagrams. □

maybe this is a (trivial)
proposition

sec:notation
4.6. Notation conventions. Throughout this paper we consider the t and s
filtrations on CT̃ and Ã, as well as on their various quotients and subspaces. We
summarize the notation in the section below:

• CT̃ is the space of C-linear combinations of framed tangles in Mp

• CT̃ ( ) is the space of C-linear combinations of framed knots in Mp

• T̃t is the t’th filtered component of CT̃ with respect to the t-filtration,
which contains all linear combinations of framed tangles in Mp with at
least t double points(both strand-strand and strand-pole types) and fram-
ing changes.

• T̃ s is the s’th filtered component of CT̃ with respect to the s-filtration,
which contains all linear combinations of framed tangles in Mp with at
least s strand-strand double points and framing changes.

• T̃ s
t := T̃t ∩ T̃ s, which is the set of elements of CT̃ with at least s framing

changes and strand-strand double points, and at least t framing changes
and double points of any type.

• T̃ /s := CT̃ /T̃ s, is the quotient of CT̃ where diagrams with more than s
strand-strand double points or framing changes are in the kernel.

• T̃ 1/2 := T̃ 1/T̃ 2, is the quotient of CT̃ where diagrams with 0 or greater
than 1 strand-strand double point or framing change are in the kernel.

• Ã is the associated graded space of CT̃ under the t-filtration, and is the
space of admissible chord diagrams modulo admissible 4T relations.

• Ãt := T̃t/T̃t+1 is the degree t component of Ã which consists of all admis-
sible chord diagrams in Ã with exactly t chords of any type.

• Ã≥s :=
∏
t T̃ s

t /T̃ s
t+1 is the s’th filtered component of Ã

• Ã/s := Ã/Ã≥s

Theses notations are extended to subspaces and quotients of CT̃ and Ã in the
natural way.

sec:Conway
4.7. The Conway quotient. In this section we introduce the Conway quotient
of CT̃ : essentially, a Conway skein module of tangles in Mp without fixing the
value of the unknot. The Conway relation respects the t and s filtrations and the
Kontsevich integral descends to the Conway quotient.

Definition 4.17. The Conway quotient of CT̃ is defined as

CT̃∇ := CT̃ JaK
/

− = (e
a
2 − e−

a
2 ) ,
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where a is a formal variable with t and s degree 1. The skein relation is applied
only to strand-strand crossings, not strand-pole crossings. We will use the variable
b as a shorthand for b = e

a
2 − e−

a
2 .

The t and s filtrations on CT̃ induce filtrations on CT̃∇. Following the notation
conventions in Section 4.6, let T̃∇,t denote the t’th filtered component of CT̃∇ and
Ã∇ := grt CT̃∇ =

∏
T̃∇,t/T̃∇,t+1 denote the associated graded algebra of CT̃∇ with

respect the total filtration. We now show that Ã∇ has a diagrammatic description
similar to Ã, where Ã ∼= D as in Theorem 4.9.

Definition 4.18. Let

D∇ := DJaK
/

= a , = a

where a is a formal variable of degree 1 as above, and the relations locally apply
only when all skeleton components involved are strands, not poles.

Note that the quotient relations in D∇ preserve the t-grading on D and the
grading descends to D∇. The next theorem shows that Ã∇

∼= D∇. This theorem
essentially follows from the results of [LM95], and we present a brief direct proof.

thm:Z_conway Theorem 4.19. The Kontsevich integral descends to an expansion Z∇ : CT̃∇ →
D∇ and Ã∇

∼= D∇.
This proof uses R1, so I
don’t know how a framed
analogue works exactly,
and also not sure that we
need it. I commented it
out for now.
I believe this theorem is
correct with framing
changes. Please double
check.

Proof. This proof follows the general schema introduced in Section ??, in partic-
ular Lemma 3.1 and the map ψ, which assigns singular tangles to chord diagrams.

First we show that ψ descends to a graded surjection ψ : D∇ → Ã∇. To show
that ψ is well-defined, we need to show that the Conway relation in D∇ is in the
kernel. Locally,

ψ
(

− a
)
= − a ,

and denote the (global) total degree on both sides by t. In other words, the
for Z: We can use
(upsmoothing with two
arrows up) minus a times
double point and RI
disapears

(global) right hand side is interpreted as an element of T̃∇,t/T̃∇,t+1. Using the
Conway skein relation in Ã∇, the right had side can be simplified

− a = (e
a
2 − e−

a
2 ) − a = (e

a
2 − e−

a
2 − a) + a( − )

Observe that a( − ) and the lowest degree term of e
a
2 − e−

a
2 − a are both of

degree 2, hence ( − a ) ∈ T̃∇,t+1, and therefore is zero in T̃∇,t/T̃∇,t+1.

We now verify that the Kontsevich integral Z descends to the quotient CT̃∇ by
checking the relations in CT̃∇ directly. Recall that Z(!) = (e

C
2 )P and Z(") =

for Z: add information
about how Z acts wrt size
of crossing

(e−
C
2 )P, where C denotes a chord, the exponential is interpreted formally as a

power series, and Ck denotes stacking k chords. Using the Conway relation, we
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compute:

Ck = k
∇
= ak k = ak( )k =


ak , if k is even

ak , if k is odd

Now applying Z to the left hand side of the Conway relation, we obtain

Z( )− Z( ) = (e
C
2 − e

−C
2 )

=
∞∑
k=0

(
Ck

2kk!
− (−1)kCk

2kk!

)

=

∞∑
k=0

C2k+1

22k(2k + 1)!

=
∞∑
k=0

a2k+1

22k(2k + 1)!

=
∞∑
k=0

a2k+1

22k(2k + 1)!

= (e
a
2 − e−

a
2 )

= Z
(
(e

a
2 − e−

a
2 )

)
.

Thus, Z descends to the Conway quotient CT̃∇.
Therefore, by Lemma 3.1, Z is a homomorphic expansion for CT̃∇ and ψ :

D∇ → Ã∇ is an isomorphism. □

While our main focus is the t-filtration on CT̃∇ and its associated graded space
Ã∇, the low degree components of the associated graded of CT̃∇ with respect to
the s-filtration arise when identifying the Goldman-Turaeav Lie bialgebra, as will
be detailed in the coming Section 5. One space that arises is T̃ /1

∇ , the quotient of
T̃∇ by the s-degree 1 component T̃ 1

∇ (recall the notation conventions from Section
4.6). On this quotient, the Conway relation has no effect and T̃ /1

∇ is actually
isomorphic to T̃ /1.

prop:nonabneeded Proposition 4.20. T̃ /1
∇

∼= T̃ /1

For Z: Please review this
proof for formality and
correctness.

Proof. The quotients T̃ /1 and T̃ /1
∇ are both spanned by the classes of tangles,

and T̃ /1
∇ is further quotienting T̃ /1 by the Conway relation. Such a tangle T in

T̃ /1 is only defined up to strand-strand crossing changes; the difference between
two tangles with a crossing change yields a single tangle with a double point in
T̃ 1. So if two tangles in T̃ /1 differ by an application of the Conway relation, they
must also differ by a crossing change, and hence their difference is already in T̃ 1.
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Thus, further quotienting by the Conway relation has no effect on T̃ /1, and so
T̃ /1
∇

∼= T̃ /1. □

The space T̃ /1 is also isomorphic to T̃ 1
∇/T̃ 2

∇ through the inverse isomorphisms
“multiplication by b” and “division by b” maps, denoted mb and qb. We now show
this explicitly in the next proposition.

prop:divbybexists Proposition 4.21. The multiplication by b map mb : T̃ /1 → T̃ /2
∇ is injective,

and its image is T̃ 1/2
∇ .

Proof. We first prove that the image of mb is T̃ 1/2
∇ . The quotient T̃ /1 is spanned

by the classes of tangles T . For a tangle T , the image mb(T ) = bT is in T̃ 1, and
represents an element in T̃ 1/2. Thus, the image of mb is contained in T̃ 1/2.

Conversely, any element y of T̃ 1/2 is (non-uniquely) represented as a sum of
the form

∑k
i=1 Ti + b

∑l
j=1 Tj , where Ti are tangles with one double point each,

and Tj are arbitrary tangles. Then, by the Conway relation, each Ti = b · TCi ,
where TCi denotes the tangle where the double point in Ti has been smoothed.
Thus, y = b

(∑k
i=1 T

C
i +

∑l
j=1 Tj

)
, and therefore y is in the image of mb.

To prove injectivity of mb, it is enough to provide an inverse, division by b

map, on T̃ 1/2
∇ , but in fact there is a one sided inverse defined on all of T̃ /2

∇ which
is defined as follows. For a tangle T and a crossing x of T , let ϵ(x) ∈ {±1} be the
sign of x, and T |x→a be the tangle T with x replaced by a smoothing. There is
a well defined “division by b” map qb : T̃

/2
∇ → T̃ /1 given by the linear extension

of the following:

bT
qb7→ T

T
qb7→ 1

2

∑
x crossing of T

ϵ(x)T |x→a

For well-definedness, it is straightforward to check that qb preserves the Rei-
demeister moves. We also need to check that T̃ 2

∇ and the Conway relation are in
the kernel. For bkT ∈ T̃ 2

∇ , if k = 1, then T ∈ T̃ 1, so qb(bT ) = 0. If instead k = 0,
then T has at least two double points. Replacing a crossing by a smoothing only
changes the crossing that is replaced, so other crossings (and therefore double
points) remain unchanged. Therefore qb(T ) can be written as a sum where each
term has at least one double point, so qb(T ) = 0 as well.

To show that the Conway relation also vanishes, note that the terms in qb( ) =
qb(!−") come from either smoothing a crossing that is a part of the double point,
or smoothing a crossing that is not. In the latter, the double points outside the
local relation remain unchanged, so those terms are in T̃ 1

∇ . The only remaining
terms are those where the crossings forming the double point are smoothed, so
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we get

qb
(

−
)
=

1

2
− (−1)

1

2
= = qb

(
b

)
showing qb is well-defined.

Restricting qb : T̃
1/2
∇ → T̃ /1

∇ is clearly surjective. To show it’s injective, note
that the restriction is simply given by bT 7→ T , and if T ∈ T̃ 1

∇ , then bT ∈ T̃ 2
∇ .

□

cor:divbyb Corollary 4.22. The map mb : T̃ /1 → T̃ 1/2
∇ is an isomorphism with inverse

qb : T̃
1/2
∇ → T̃ /1.

Notice that both mb and qb are filtered degree shifting maps. These maps
are relevant to realize the degree shifting properties of the Goldman bracket and
Turaev cobracket in the Conway quotient.

For Z: Please make this
remark formal.rem:grdivbyb Remark 4.23. The associated graded of qb is an isomorphism gr qb : Ã1/2 → Ã/1

given by drawing the chord diagram as with one s-s chord, smoothing that chord
using ∇, and getting a factor of b with no remaining s-s chords, and then diving
off the b.

One difficulty that arises in the Conway quotient is that the skeleton of a
tangle is not well defined. For example, two disjoint, unlinked circles can be
joined together into a figure 8 through an application of the Conway relation.
In general, the Conway relation changes the skeleton of a diagram, so we must
take some care to define what is meant by notations such as T̃∇( ) (recall that
without ∇ this notation means take all tangle diagrams with a fixed skeleton ).

Definition 4.24. For skeleton S, T̃∇(S) is the linear span of the set of diagrams
for which there is a representative tangle on S.

For Z: Please review this
definition for formality
and correctness.
Are we just saying take
the Conway quotient of
T̃ (S), as in (T̃ (S))∇?

Definition 4.25. For skeleton S, Ã/r
∇ (S) represents the associated graded space

of T̃ /r
∇ (S), and a nontrivial chord diagram in Ã/r

∇ (S) has a representative with a
chord diagram on skeleton S with at most r strand-strand chords.

For Z: Please review this
definition for formality
and correctness.

The isomorphism from Proposition 4.20 descends to isomorphisms on T̃ /1( )

and Ã/1( ).

cor:/1conway Corollary 4.26. T̃ /1( ) ∼= T̃ /1
∇ ( ).

cor:gr/1conway Corollary 4.27. Ã/1( ) ∼= Ã/1
∇ ( ).

However, Corollaries 4.26 and 4.27 are not true for higher degree quotients
because of the skeleton changing issue induced by the Conway relation.
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*

γ1 γ2 γp

Figure 17. The standard generating curves of π.fig:GenCurves

* *
1 2

1 2 1 2
β

|−→ −

−γ1γ
−1
2 γ1

= γ1(γ
−1
2 − 1) ∈ I

Figure 18. Example calculation demonstrating that β is a fil-
tered map.fig:BetaFiltered

5. Identifying the Goldman-Turaev Lie bialgebra
sec:IdentifyingGTinCON

In this section we establish our main results: we identify the Goldman-Turaev
Lie bialgebra in the low s-filtered degree quotients of CT̃ , and show that the
Kontsevich integral induces a homomorphic expansion on this space with respect
to the s-filtration. Appealing to the principle summarized in Section 2 we present
diagrams like (??), where the induced map η is the Goldman bracket and the self
intersection map µ, repsectively. We deduce the homomorphicity of the expansion
from the naturality of the construction as in (2.4).

sec:identifybracketinCON
5.1. The Goldman Bracket. Recall from Section 3.2 that Dp denotes the p-
punctured disc, π is its fundamental group, and |Cπ| is the linear quotient |Cπ| :=
Cπ/[Cπ,Cπ], which is linearly generated by homotopy classes of free loops in Dp.
The Goldman bracket (Definition 3.2) is a lie bracket [·, ·]G : |Cπ| ⊗ |Cπ| →
|Cπ|. Recall from Section 4.7 the space CT̃ ( ) is the vector space of C-linear
combinations of framed knots in Mp = Dp × I.
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prop:BotProj Proposition 5.1. The bottom projection Mp → Dp × {0} induces a surjective
map CT̃ ( ) → |Cπ̃|. Post-composing this with the projection |Cπ̃| → |Cπ| results
in a surjective filtered map

β : CT̃ ( ) → |Cπ|.

Proof. By Reidemeister’s Theorem, framed knots in CT̃ ( ) are faithfully repre-
sented by knot diagrams in Dp × {0} – regular projections to the bottom with
over/under information – modulo the Reidemeister moves (R2, R3). The bottom
projection sends the Reidemeister moves for knots to the corresponding moves
generating regular homotopies of immersed free loops, hence β is well-defined.
The projection is clearly surjective as any loop can be lifted to a knot by intro-
ducing arbitrary under/over information at the crossings.

The statement that β is filtered means that step k of the the Vassiliev t-
filtration in CT̃ ( ) projects to step k of the filtration on |Cπ| induced by the
I-adic filtration of π. Note that strand-strand double points and framing changes
map to 0 under β, thus, we only have something to prove for knots with k strand-
pole double points.

Let γ1, ..., γp denote the standard generators of π as in Figure 17. A knot
K ∈ CT̃ ( ) maps to a free loop in |Cπ|, whose conjugacy class in π is represented
as a word in the generators γi. A pole-stand double point on pole j maps to a
difference between two curves passing on either side of the j’th puncture (see
Figure 18 for an example). Therefore, the words in π representing these curves
differ in a single instance of γ±1

j . Thus, a knot with k pole-strand double points
maps to a product with k factors of the form ±(γ±1

j − 1). This is by definition
an element in Ik. □

prop:kerbeta Proposition 5.2. The kernel of β is T̃ 1( ), and β descends to a filtered (with
respect to the t-filtration) linear isomorphism β : T̃ /1( ) → |Cπ|.

Proof. Two framed knots in CT̃ ( ) project to the same loop in |Cπ| if and only
if they differ by framing changes and (strand-strand) crossing changes, which
generate precisely the step 1 of the s-filtration, that is, T̃ 1( ). □

Recall from Corollary 4.26 that T̃ /1( ) = T̃ /1
∇ ( ). Hence, we get the following:

cor:loopsasknots Corollary 5.3. The map β descends to an isomorphism β : T̃ /1
∇ ( ) → |Cπ|.

Recall that Ã is the associated graded space of CT̃ with respect to the t-
filtration, and CT̃ is also filtered by the s-filtration. Explicitly, Ã( ) is the space
of admissible chord diagrams on a circle skeleton as in Definition 4.8, Ã≥i( ) is
the s-degree i filtered component of Ã( ), and Ã/i( ) = Ã( )/Ã≥i( ). Recall
from Section 3.2 that the associated graded vector space of |Cπ| is |FA |, where
FA = FA⟨x1, · · · , xp⟩ denotes the free associative algebra over C, and the linear
quotient |FA | = FA /[FA,FA] is the C-vector space generated by cyclic words in
the letters x1, ..., xp.
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1 2 3

|−→ |x23x2x21x2x3| ∈ |FA |

Figure 19. Chord diagrams with no strand-strand chords can be
read as cyclic words.fig:CycWord

Proposition 5.4. The associated graded map grβ : Ã( ) → |FA | has kernel
Ã≥1( ). Hence, grβ descends to an isomorphism grβ : Ã/1( ) → |FA |.

Proof. The statement follows from applying the associated graded functor to the
filtered short exact sequence

0 T̃ 1( ) T̃ ( ) |Cπ| 0.
β

The filtrations on T̃ 1( ) and |Cπ| are induced from the filtration on T̃ ( ), as in
Lemma 2.3, so the associated graded sequence is also exact. □

Remark 5.5. In Ã/1( ) chord diagrams with any strand-strand chords are zero.
Thus, non-zero elements of this space are represented as chord diagrams on poles
and a single circle strand, with strand-pole chords only, as in Figure 19. Such a
chord diagram corresponds naturally to a cyclic word by labelling the poles with
x1, ..., xp and reading the word along the circle skeleton, as shown. Indeed, this
is the map grβ.

We now derive the Goldman bracket from the stacking commutator on CT̃ :

thm:bracketsnake Theorem 5.6. Let λ1 : T̃ /2
∇ ( )⊗T̃ /2

∇ ( ) → T̃ /2
∇ ( ) denote the stacking product.

Let λ2 denote the opposite product, that is, λ2(K1,K2) = K2K1. Then λ = λ1−λ2
induces the Goldman bracket on |Cπ|: the diagram in Figure 20 is commutative
and the induced homomorphism η agrees with the Goldman Bracket under the
identification β : T̃ /1( ) → |Cπ| as

[−,−]G = β ◦ qb ◦ η ◦ (β−1 ⊗ β−1).

Proof. For K1 ⊗K2 in T̃ /2
∇ ( )⊗ T̃ /2

∇ ( ), λ(K1 ⊗K2) = K1K2 −K2K1. Project
K1K2 and K2K1 to the bottom to obtain link diagrams. Let a mixed crossing of
such a diagram be a crossing where one strand belongs to K1 and the other strand
belongs to K2. Notice that in K2K1 all mixed crossings are flipped compared to
K1K2, while other crossings – those belonging to K1 or K2 only – are the same.
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0 Ker T̃ /2
∇ ( )⊗ T̃ /2

∇ ( ) T̃ /1( )⊗ T̃ /1( ) 0

0 T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( ) 0

T̃ /1( )

0 0

η̂

η

λ

mb

Figure 20. The nontrivial horizontal maps are the respective
quotient and inclusion maps. The space Ker is the kernel of the
projection map on the top right.fig:Snakeforbracket

Using the double point notation, write positive mixed crossings in K1K2 as
= + and negative mixed crossings as = − , where each double

point has one strand belongs to K1 and the other belongs to K2. Rewriting all the
mixed crossings of K1K2 in this way yields a sum of tangles indexed by subsets
of the mixed crossings. Denote the set of mixed crossings by M , and for a subset
X ⊆M , denote by LX the singular link obtained by changing the crossings in X
to double points, and flipping the other mixed crossings (those in M \X). Also,
let ϵX be the product of the signs of all crossings in X. Then

eq:commutatoreq:commutator (5.1) K1K2 =
∑
X⊆M

ϵXLX .

for N: rewrite as
telescoping sumNotice that L∅ = K2K1, and if |X| = i then LX ∈ T̃ i

∇( ). Therefore,
λ(K1K2) is in T̃ 1

∇ ( ), and therefore the right hand square commutes. Further-
more, we have

eq:singletonseq:singletons (5.2) λ(K1,K2) =
∑

X⊆M,|X|=1

LX ∈ T̃ 1/2
∇ ( ).

Now for the left square, the kernel K of the projection map from T̃ /2
∇ ( ) ⊗

T̃ /2
∇ ( ) → T̃ /1

∇ ( ) ⊗ T̃ /1
∇ ( ) is generated by T̃ 1/2

∇ ( ) ⊗ T̃ /2
∇ ( ) in T̃ /2

∇ ( ) ⊗
T̃ /2
∇ ( ). and T̃ /2

∇ ( )⊗ T̃ 1/2
∇ ( ). Suppose that K1 ⊗K2 is in T̃ 1/2

∇ ( )⊗ T̃ /2
∇ ( ),

in other words, there is a double point in K1. Then, by the same computation as
in Equation 5.1, λ(K1⊗K2) is in T̃ 2

∇ ( ), as every term contains the pre-existing
double point in K1, and at least one additional mixed double point. Therefore,
the left hand square commutes.
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Figure 21. Example commutator bracket computation.fig:combracket

As in Section 2, then λ induces a unique well defined homomorphism η :

T̃ /1( ) ⊗ T̃ /1( ) → T̃ 1/2
∇ ( ). We identify η as the Goldman bracket. We

have that the isomorphism β gives T̃ /1( ) ∼= |Cπ| (Proposition 5.2), identifying
the domain of η with the domain of the Goldman bracket. We now argue that η
has image in T̃ /1( ) ∼= |Cπ|.

By Equation (5.2), λ(K1,K2) is a sum of terms, each with a single mixed double
point. Applying the Conway relation to smooth each of these mixed double points
changes the skeleton from two circles to one circle, and introduces a factor of b.
In other words, λ(K1,K2) ∈ bT̃ /2

∇ ( ) ⊆ T̃ 1/2
∇ ( ). By Corollary 4.22, restricted

to a circle skeleton, we know that bT̃ /2
∇ ( ) ∼= T̃ /1( ) via the map qb. (The map

η̂ in the diagram is qb ◦ η). In turn, T̃ /1( ) ∼= |Cπ| again via the map β.
In summary, the map η is induced from λ in the following way. For curves

γ1⊗ γ2 ∈ T̃ /1( )⊗ T̃ /1( ), let K1⊗K2 be an arbitrary vertical lift of γ1⊗ γ2 to
knots in T̃ /2

∇ ( )⊗ T̃ /2
∇ ( ). Then

η(γ1 ⊗ γ2) =
λ(K1 ⊗K2)

b
∈ T̃ /1( ),

where we use the notation 1
b to mean composition with qb. We need to show that

this agrees with the Goldman bracket (Definition 3.2). This is clear from the
definition: the Goldman bracket is a sum of smoothings of the mixed crossings
of γ1 and γ2, exactly as above, and the signs in the sum match the signs of the
crossings. See Figure 21 for an example calculation. □
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0 Ker A/2
∇ ( )⊗A/2

∇ ( ) A/1( )⊗A/1( ) 0

0 A1/2
∇ ( ) A/2

∇ ( ) A/1
∇ ( ) 0

A/1( )

0 0

gr η̂

gr η

grλ

Figure 22. The associated graded commutative diagram of Fig-
ure 20.fig:Snakefor_gr_bracket

The graded Goldman bracket is a map [−,−]grG : |FA | ⊗ |FA | → |FA |, as
in Definition ??. By taking the associated graded of the diagram in Figure 20
we arrive at the commutative diagram in Figure 22 and recover the associated
graded Goldman bracket:

cor:snakefor_gr_bracket Corollary 5.7. The diagram in Figure 22 commutes, the rows are exact, gr η is
the induced connecting homomorphism. Therefore, gr η̂ is the associated graded
Goldman bracket via the identification A/1( ) ∼= |FA |.

Proof. Corollary 2.4 states that applying gr to the commutative, exact diagram in
Figure 20 gives the commutative and exact diagram in Figure 22, and guarantees
that gr η is the unique induced connecting homomorphism. The graded Goldman
bracket is the realized by

gr[·, ·]G = grβ ◦ gr η̂ ◦ (grβ−1 ⊗ grβ−1).

□

thm:bracketsnake Theorem 5.8. The Kontsevich integral descends to a homomorphic expansion
for the Goldman Bracket. That is, the outside square of the following diagram
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T̃ /1( ) Ker T̃ /2
∇ ( )⊗ T̃ /2

∇ ( ) T̃ /1( )⊗ T̃ /1( )

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

Ker A/2
∇ ( )⊗A/2

∇ ( ) A/1( )⊗A/1( )

A1/2
∇ ( ) A/2

∇ ( ) A/1( )

A/1( )

Z/1

0 Z1/2⊗Z1/2 λ Z/2⊗Z/2

Z/1⊗Z/1

0

η̂

Z1/2

0 grλ 0

gr η̂

Z/2 Z/1

Figure 23. Commutative cube showing the formality of the
Goldman bracket from the Kontsevich integral.

commutes:

|Cπ| T̃ /1( ) T̃ /1( )⊗ T̃ /1( ) |Cπ| ⊗ |Cπ|

|FA| A/1( ) A/1( )⊗A/1( ) |FA| ⊗ |FA|

Z/1

∼=
β

Z/1

η̂

Z/1⊗Z/1

∼=
β−1⊗β−1

[·,·]G

Z/1⊗Z/1

∼=
grβ gr η̂

∼=
grβ−1⊗grβ−1

gr[·,·]G

fig:Cube_for_bracket Proof. The top and bottom squares commute by Theorem 5.8 and Corollary 5.7.
All that needs to be shown is the commutativity of the middle square. This
middle square occurs as the diagonal square of the multi-cube in Figure 23.

Using the construction in Section 2, we only need to show that the faces of the
multi-cube in Figure 23 commute; this implies desired commutativity of the diag-
onal square. We have already established that the top and bottom faces commute
from Theorem 5.8 and Corollary 5.7. The front and back vertical faces commute
because Z is a filtered map with respect to the s-filtration (Proposition 4.16).
The left and right vertical sides commute trivially because of the zero maps.

The Kontsevich integral is homomorphic with respect to the stacking product
(Proposition 4.13). Since λ is the difference between the stacking product and
its opposite product, Z is homomorphic with respect to λ. In other words, the
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middle vertical face of Figure 23) commutes:

T̃ /2
∇ ( )⊗ T̃ /2

∇ ( )

T̃ /2
∇ ( )

A/2
∇ ( )⊗A/2

∇ ( )

A/2
∇ ( )

λ
Z/2⊗Z/2

Z/2

grλ

In summary, all faces of the multi-cube in diagram in Figure 23 commutes, and
therefore so does the induced diagonal square, completing the proof. □

maybe we should revive
the commented out
example below, showing
how the graded bracket
works
I can’t find the example
you are referring to.

sec:cobracketinCON
5.2. The Tureav co-bracket. In Section 3.2 we reviewed the definition of the
Turaev cobracket on |Cπ| via the map µ : Cπ̃ → |Cπ| ⊗ Cπ, which required
choosing a rotation number −1/2 representative for curves in Cπ̃. Our lift for the
cobracket imitates this construction.

We start by interpreting Cπ̃ in the context of tangles. Let denote an interval
skeleton component where both endpoints are on the bottom Dp × {0}. We call
a tangle with skeleton a bottom tangle. We mark the endpoints of the interval
by • and ∗, as in Figure 24. Furthermore, we denote by T̃ ( k ℓ

) tangles with
k circle skeleton components, and ℓ bottom intervals.

We extend the projection map β (Proposition 5.1) to such tangles to obtain an
isomorphism similar to Corollary 5.3:

prop:ascispi Proposition 5.9. There is a well-defined natural bottom projection

β : CT̃∇(
k ℓ

) → |Cπ|⊗k ⊗ Cπ⊗ℓ,

which descends to an isomorphism β : T̃ /1( k ℓ
)

∼=−→ |Cπ|⊗k ⊗ Cπ⊗ℓ.
we probably need to say
this is still filtered?Proof. Identical to the proof of Proposition 5.1. □

Do we even need a proof?
If so, maybe restate as
the mult by b map to
follow like the Prop 4.21,
none the less, the proof
needs work or be deleted.

prop:qbonbottomtangles Proposition 5.10. The division by b map, qb, descends to an isomorphism

qb : T̃
1/2
∇ ( )

∼=−→ T̃ /1
∇ ( ).

Proof. Thinking about the inverse map multiplication by b, mb, an element of
T̃ /1
∇ ( ) The map qb uses the Conway relation to smooth double points to get a

two-component tangle, where one component has interval skeleton and the other
component has circle skeleton. □

Next, we will recover µ as the connecting homomorphism induced from the
difference between two ways to lift a bottom tangle.

compile error
complaining about
botskel in the caption



38 D. BAR-NATAN, Z. DANCSO, T. HOGAN, J. LIU, AND N. SCHERICH

ascending descending neither

Figure 24. An example curve in Cπ lifted to bottom tangles.
The left lift is an ascending tangle, the middle lift is a descending
tangle, and the last lift is neither ascending nor descending. All
three tangles are equivalent in T̃ /1, but distinct in T̃ .fig:ascending

def:asc+desc Definition 5.11. Let • and ∗ be two points on the boundary of Dp that are close
together. An embedding

T : (I, {0, 1}) ↪→ (Mp, {•, ∗})
representing a bottom tangle is called ascending if it “first winds upwards, and
then goes straight down”. More precisely, if (z, s) is a global coordinate system
for Mp = Dp × I, then T is an ascending tangle if there exists c ∈ (0, 1) such
that when t ∈ (0, c), the d

ds component of Ṫ is positive, when t ∈ (c+ ϵ, 1), Ṫ is a
negative constant multiple of d

ds , and when t ∈ (c, c+ ϵ), T smoothly transitions
through a maximum (no sharp corner).

Likewise, such an embedding representing a bottom tangle T is descending if it
“first goes straight up, and then winds downward”. So there is c ∈ (0, 1) such that
when t ∈ (0, c), Ṫ is a positive constant multiple of d

ds and when t ∈ (c+ ϵ, 1) the
d
ds component of Ṫ is negative, and when t ∈ (c, c + ϵ), T smoothly transitions
through a maximum.

Definition 5.12. An ascending tangle is a bottom tangle in Mp whose ambient
isotopy class has an ascending embedding. Similarly, a descending tangle is a
bottom tangle in Mp whose ambient isotopy class has an descending embedding.
See Figure 24 for an example.

Given a curveK in Cπ, through the isomorphism β, K can be lifted to a bottom
tangle in T̃ /1( ). Because we are in the quotient by degree 1 terms, crossings
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can be changed at will to make the lifted tangle be ascending or descending.
However, to lift K to a framed tangle takes some care. For any framed curve
K in Cπ, we can choose a homotopy class representative with rotation number
0 that is a sailing curve. A sailing curve is a curve whose tangent vector never
points in a fixed specified direction. For this context, viewing Dp × 0 as a subset
of C a we fix the north direction n⃗ to be in the direction of i, and sailing curves
never point north. For a curve to avoid pointing north when turning from west
to east, (instead of tacking like a sailboat with your nose to the wind) a kink can
be added to loop the curve back around through the south direction and then
continue heading east (do a jib turn like a sailboat with your back to the wind).
See Figure 25 for an example sailing curve. When taking a lift of a sailing curve
K, there is an ascending lift of the curve where the north vector is never tangent
to the curve. We will denote this lift as λa(K). We can choose a framing at each
point p on λa(K) by taking the tangent vector Ṫ at p and the projection of n⃗ on
to the plane normal to Ṫ (since Ṫ is never parallel to n⃗). Thus λa(K) is a framed
ascending bottom tangle. Similarly we can lift K to a framed descending bottom
tangle denoted λd(K). Finally, we define λ̄ : T̃ /1( ) → T̃ /2( ) by

λ̄(K) = λa(K)− λb(K)

to be the difference between the framed ascending bottom tangle and the framed
descending bottom tangle. In T̃ /2( ), crossing changes matter so λ̄ is not the
zero map.

Notice that one can convert an ascending bottom tangle to a descending bottom
tangle (and vice versa) by first identifying all strand-strand crossings, in all such
crossings swap which strand is on top, and then re-adjust the height of the strands
to make it descending.

Theorem 5.13. The diagram in Figure 26 commutes and the unique induced
map η, when composed with isomorphisms qb and β, is the self intersection map
µ, that is µ = βqbηβ

−1.

Proof. We need to show the right square commutes, which reduces to showing the
right bottom triangle commutes. That is λ̄ has image in the kernel of T̃ /2

∇ ( ) →
T̃ /1( ). Let T be a tangle in T̃ /1( ), and let Ta be a framed ascending bottom
lift of T and Tb be a framed descending bottom lift of T . Then λ̄(T ) = Ta − Tb.

Starting with Ta, let S denote the set of all strand-strand crossings of Ta. Using
double point notation, we can rewrite each crossings in S as a sum or difference of
a double point and and the opposite crossing, i.e. = + and = − .
As in the proof of Theorem 5.8, rewriting each s-crossing of T in this way yields
a sum indexed by the subsets of S. For every subset X of S, let TX denote the
tangle where all crossings in X of Ta are changed to double points, and all other
crossings in S \X are flipped. Letting ϵX be the product of the signs in of all the
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forbidden
tangentn⃗

p(n⃗)

Ṫ

n⃗

Figure 25. A rotation number 0 sailing curve in Cπ lifts to a
framed bottom tangle in Mp. Here, p(n⃗) is the projection of n⃗ on
to the plane normal to Ṫ at point p.fig:framing_from_sailing

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( ) 0

0 T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ /1( )

0

q

0
λ̄

η̂

η

qb

λ=λ̄◦q

∼=

Figure 26. The nontrivial horizontal maps are the respective
quotient maps, and q is one such quotient map.fig:Snakeformu

crossings in X, we get

eq:T_aAsASumeq:T_aAsASum (5.3) Ta =
∑
X⊆S

ϵXTX .
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Notice that T∅ = Tb, as all of the strand-strand crossings in Ta have flipped,
and if |X| = i then TX ∈ T̃ /i

∇ ( ). Thus, we see that

λ̄(T ) = Tb − Ta =
∑

X⊂S,|X|=1

ϵXTX ∈ T̃ 1/2
∇ ( )

which concludes that the right square of the diagram in Figure 26 commutes.
We need to show the left square commutes, which is that λ applied to anything

in T̃ 1/2
∇ ( ) is in T̃ 1/2

∇ ( ). Starting with T ∈ T̃ 1/2
∇ ( ), T has a double point, and

a Suppose that K1⊗K2 is in T̃ 1/2
∇ ( )⊗T̃ /2

∇ ( ), in other words, there is a double
point in K1. Then, by the same computation as in Equation 5.1, λ(K1⊗K2) is in
T̃ 2
∇ ( ), as every term contains the pre-existing double point in K1, and at least

one additional mixed double point. Therefore, the left hand square commutes.
The image of η actually lives in T̃ /1( )
We need to show η is the self intersecting map, when composed with β’s.
By passing to the quotient T̃ 1

∇/T̃ 2
∇ ( ), only the terms that have a single double

point remain, so T − T fb becomes a sum over the s-crossings of T , where in each
term the s-crossing is replaced by a double point. The map qb uses the Conway
relation to smooth these double points to get a two-component tangle, where one
component has interval skeleton and the other component has circle skeleton.
Thus we land in T̃ /1

∇ ( ), which is isomorphic to |Cπ| ⊗ Cπ via β. □

For a bottom tangle, there is a closure map from cl : T̃ ( ) → T̃ ( ) by
connecting the endpoints of the bottom tangle, • and ∗, by a canonical path in the
boundary of the disk. Recall from Section 3.2 that the cobracket δ is constructed
from µ by post composing with the closure map and then antisymetrizing. In the
context of tangle diagrams, this construction is shown in Figure 27. The closure
map cl : T̃ /1( ) → T̃ /1( ) ⊗ T̃ /1( ) orders the components by placing the
closed bottom tangle in the second slot. The intermediate induced map after
closing, but before antisymmtrizing, is denoted in the figure by δ̂ and is called the
ordered Turaev cobracket. We will show the Kontsevich integral is homomorphic
with respect to δ̂. The homomorphicity of δ with respect to Z follows from
immediately the homomorphicity of δ̂ with respect to Z because gr(Alt) = Alt.

Taking the associated graded of the diagram in Figure 20 we arrive at the
diagram in Figure 28

thm:snakefor_gr_cobracket Theorem 5.14. The diagram in Figure 28 commutes and the induced map gr δ̂
is the associated graded ordered Turaev cobracket.

Proof. The maps in the diagram of Figure 27 are filtered maps, and therefore
Figure 28 is obtained by applying the associated graded functor to it. As a
result, the diagram of Figure 28 commutes, grµ is the induced map from the
snake lemma for this diagram, and so gr δ̂ coincides with the graded ordered
Turaev cobracket. □
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T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ /1( )

T̃ /1( )⊗ T̃ /1( )

T̃ /1( )⊗ T̃ /1( )

0 0

η̂

δ̂

δ

qb

λ

cl

∼=

Alt

Figure 27. Constructing δ from η̂.fig:Snakeforcobracket

Ã1/2
∇ ( ) Ã/2

∇ ( ) Ã/1( ) 0

0 Ã1/2
∇ ( ) Ã/2

∇ ( ) Ã/1( )

Ã/1( )

Ã/1( )⊗ Ã/1( )

0 0

grµ

gr δ̂

qb

grλ

gr cl

∼=

Figure 28. Associated graded diagram constructing the graded
ordered Turaev cobracket.fig:Snakefor_gr_cobracket

lem:topcubesimplification Lemma 5.15. There exists a map ρ : T̃ /1( ) ⊗ T̃ /1( ) → T̃ /2
∇ ( ) that makes

the diagram in Figure 29 commute.
In this figure, do we need
µ in it still?

Proof. There is an isomorphism from T̃ /1( )⊗T̃ /1( ) to T̃ /1( ) by combining
the two tangles into a single tangle and forgetting the order of the components.
Since we are modding out by s degree 1, there is no notion of over or under, these
are just curves in the disc.
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T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ /1( )

T̃ /1( )⊗ T̃ /1( ) T̃ /2
∇ ( ) T̃ /1( ) 0

0 0

µ

δ̂

qb

λ

cl

0

cl

∼=

∃ρ

Figure 29. Commutative diagram for Lemma 5.15.fig:topcubesimplification

The map ρ : T̃ /1( ) ⊗ T̃ /1( ) → T̃ /2( ) is defined to be the following com-
position of maps.

T̃ /1( )⊗ T̃ /1( ) T̃ /1( ) T̃ 1/2
∇ ( ) T̃ /2

∇ ( )
forget

ρ

qb

Since the image of ρ in T̃ /2
∇ is all of T̃ 1/2 we get the following short exact sequence.

T̃ /1( )⊗ T̃ /1( ) T̃ /2
∇ ( ) T̃ /1( ) 0

ρ

The commutativity of the diagram in Figure 29 relies finally on the commuta-
tivity of the bottom left square. We single this square out below and verify the
commutativity.

T̃ 1/2
∇ ( ) T̃ /2

∇ ( )

T̃ /1( )

T̃ /1( )⊗ T̃ /1( ) T̃ /1( ) T̃ 1/2
∇ ( ) T̃ /2

∇ ( )

qb

cl

∼=

cl

ρ

qb
∼=
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T̃ /1( )⊗ T̃ /1( ) T̃ /1( ) T̃ 1/2
∇ ( ) T̃ /2

∇ ( )

Ã/1( )⊗ Ã/1( ) Ã/1( ) Ã1/2
∇ ( ) Ã/2

∇ ( )

forget

ρ

Z/1⊗Z/1

qb

Z/1 Z/1 Z/2

forget

gr ρ

gr qb

Figure 30. Commutative diagram for Lemma 5.16fig:frontlefthomom

Let T ∈ T̃ 1/2
∇ ( ), then T is a bottom tangle with exactly one double point.

Following along the top and right of the diagram in Figure 29, when T is closed,
we get a closed loop with one double point inside T̃ /2

∇ ( ). Following along the
right and bottom, qb(T ) uses the Conway relation to snip off a loop of T to get
a tangle in T̃ /1( ) with one closed loop and a bottom tangle, with no double
points. Closing the bottom tangle and forgetting the order of the closed loops
gives a tangle in T̃ /1( ) with two closed loops and no double points. Reversing
the Conway relation along qb glues together the two closed loops to get a single
closed loop with one double point then included into T̃ /2( ). This arrives at the
same closed loop with one double point as if we had closed T in the first place.

□

lem:frontlefthomom Lemma 5.16. The diagram in Figure 30 commutes.

Proof. The right square commutes because Z is a filtered map and respects filtered
inclusions.

For the middle square, we use the map qb from right to left and show commu-
tativity on a double point.

Z/1(qb( )) = Z/1( ) =

Z/1( ) = eC/2 − e−C/2

=
C

2
− (−C

2
) + higher degree terms ∈ Ã/2

∇ ( )

= C = = a = a

gr qb(Z
/1( )) = gr(a ) =

For the left square, Z compatible with forgetful is because we land in /1, where
there are no s-s chords. □

say more about left
square
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thm:cobrackethomomorphic Theorem 5.17. The Kontsevich integral descends to a homomorphic expansion
for the ordered Turaev cobracket. That is, the following square commutes:

T̃ /1( )⊗ T̃ /1( ) T̃ /1( )

A/1( )⊗A/1( ) A/1( )

Z/1⊗Z/1

δ̂

Z/1

gr δ̂

Proof. The diagram in Figure 31 is attained by taking the Kontsevich integral
of the commutative diagram in Figure 29 (with the middle layers omitted). We
have already established that the top and bottom faces commute by Lemma 5.15
and Theorem 5.14. The left and right vertical sides trivially commute because
of the zero maps. The front-left vertical square commutes by Lemma 5.16. The
front-right and back faces commute because Z respects the s-filtration and is
homomorphic with respect to the inclusion and quotient maps of the filtered
components.

The middle vertical face of Figure 31 is the following square.

T̃ /2
∇ ( )

T̃ /2
∇ ( )

A/2
∇ ( )

A/2
∇ ( )

cl◦λ
Z/2

Z/2

gr(cl◦λ)

The Kontsevich integral is homomorphic with respect to the flip operation, as
shown in Proposition 4.13. The map cl ◦ λ applied to a bottom tangle outputs

This is not quite right,
FIX ME!the difference between the closed ascending lift and the closed descending lift.

The closed descending lift is the flip of the closed ascending lift. So cl ◦ λ =
(id − flip) ◦ cl acting on ascending representatives. Z is homomorphic with
respect to (id− flip) ◦ cl.

where does conjugation
come into play??
Something about flipping
first then dragging the
ends down and then
closing.

The commutativity of all vertical faces of the cube diagram in Figure 31 implies
that the induces diagonal square also commutes, which gives the desired formality
of the theorem statement. □

remark–if we were doing this with µ is it wouldn’t work because flip of a bottom
tangle is not a bottom tangle. It is much cleaner to just pass to the closures.
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