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Abstract. We present a three dimensional realisation of the Goldman-Turaev
Lie biaglebra, and construct Goldman-Turaev homomorphic expansions from
the Kontsevich integral.
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1. Introduction

In 1986, Goldman defined a Lie bracket [Gol86] on the space of homotopy
classes of free loops on a compact oriented surface. Shortly after in 1991, Turaev
defined a cobracket [Tur91] on the same space1. This bracket and cobracket make
the space of free loops into a Lie bialgebra – known as the Goldman-Turaev (GT)
Lie bialgebra – which forms the basis for the field of string topology [?] and has
been an object of study from many perspectives.

add referemnces:
chas-sullivan,
kashiwara-vergne, AN,
AT, Formality paper

One of these perspectives is Kashiwara–Vergne theory. The Kashiwara–Vergne
equations originally arose from the study of convolutions on Lie groups [?]. The
equations were reformulated algebraically in terms of automorphisms of free Lie
algebras [?], it this form they are a refinement of the Baker-Campbell-Hausdorff
formula for products of exponentials of non-commuting variables.

Kashiwara–Vergne theory has multiple topological interpretations in which
Kashiwara–Vergne solutions correspond to certain invariants – called homomor-
phic expansions – of topological opbjects. The existence of a homomorphic expan-
sion is also called formality in the literature, this language is inspired by rational
homotopy theory and group theory [?].

One of these topological interpretations is due to the first two authors [BND17],
who showed that homomorphic expansions of welded foams – a class of 4-dimensional
tangles – are in one to one correspondence with solutions to the KV equa-
tions. Recently, a series of papers by Alekseev, Kawazumi, Kuno and Naef
[AKKN20,AKKN18b,AKKN18a] drew an analogous connection between KV solu-
tions and homomorphic expansions for the Goldman-Turaev Lie bialgebra for the
disc with two punctures (up to non-negligible differences in the technical details).
This correspondence was used to generalise the Kashiwara–Vergne equations via
considering different surfaces, including those of higher genus.

In other words, there is an intricate algebraic connection between four-dimensional
welded foams and the GT Lie bi-algebra, which strongly suggests that there is a
topological connection as well. In addition to the inherent interest in tangles in
handlebodies, one goal for this paper is to work towards this connection between
the two-dimensional Goldman–Turaev Lie bialgebra and four-dimesnional welded
foams, by constructing a three-dimensional realisation of the Goldman-Turaev
Lie bialgebra, with homomorphic expansions which descend to Goldman-Turaev
expansions. Our main result is informally summarised as follows:

Let T̃ denote the linear space of tangles in a punctured disc cross an interval
Mp = Dp×I. Projecting to the bottom Dp×0, one obtains curves on a punctured
disc, and the Goldman–Turaev operations on these curves are induced2 by the
stacking and flipping operations on the tangles. The Kontsevich integral is a

1Turaev’s version required factoring out by the constant loop; there is a lift to the full space
of homotopy classes of loops, given a framing on the surface [AKKN20].

2In a specific sense defined in Section 2
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homomorphic expansion for tangles in Mp, and descends to a Goldman–Turaev
homomorphic expansion on Dp.

This result is parallel to Massuyeau’s [Mas18], however, our approach to the
cobracket is significantly different and simpler, hence, more likely to lead to in-
sight into the four-dimensional connection. Another related result is [?], which
constructs Goldman–Turaev expansions from the Khnizhnik-Zamolodchikov con-
nection, a geometric incarnation of the Kontsevich integral.

In more detail, we describe a linear space T̃ of framed tangles in the handlebody
Dp×I and operations on this space, which induce the Goldman-Turaev operations
in the bottom projection to Σ × {0}. The Goldman bracket arises from the
commutator associated to the stacking product in a Cpnway skein quotient, and
the Turaev cobracked from taking the difference between a tangle and its vertical
flip, again in a Conway quotient. We study the associated graded spaces and
operations, and show that the Kontsevich integral is a homomorphic expansion
for these tangles, in other words, intertwines the operations with their associated
graded counterparts. We show that therefore, the Kontsevich integral descends to
a homomorphic expansion for the Goldman-Turaev Lie bialgebra. For the flipping
operation and the Turaev cobracket, the precise statements are subtle, and care
needs to be taken with the technical details.

There are other papers
by Turaev and
Massuyeau-Turaev that
are not mentioned here.
There are also some
references that Yusuke
mentioned that we
should include
Turaev’s paper- we can
probably pull some of our
lemmas from his paper,
reference for relationship
with HOMFLY, but he
does not mention the free
associative algebra at all.
Our paper is not a subset
of his. Skein algebra
quantizes — symmetric
lie algebra generated by
the goldman lie
algebra–you can get a
poison algebra, These
skien modules quantize
that poisson algebra

The paper is organised as follows: Section 2 gives a general algebraic framework
for how the Goldman–Turaev operations are induced by tangle operations. In
Section 3 we give a brief overview of the Kontsevich integral and the Goldman
Turaev Lie bialgebra. In Section 4, we define tangles in handlebodies, relevant
operations and Vassiliev filtrations. We identify the associated graded space of
tangles as a space of chord diagrams, and introduce the Conway skein quotient.
In Section 5, we identify the GT Lie biaglebra in a low filtration degree, and prove
the main theorem.

Acknowledgements. We are grateful to Anton Alekseev, Gwenel Massuyeau, and
Yusuke Kuno for fruitful conversations. DBN was supported by NSERC RGPIN
262178 and RGPIN-2018-04350, and by The Chu Family Foundation (NYC). ZD
was partially supported by the ARC DECRA DE170101128. NS was supported
by the NSF under Grant No. DMS-1929284 while in residence at the Institute for
Computational and Experimental Research in Mathematics in Providence, RI,
during the Braids Program. We thank the Sydney Mathematical Research Insti-
tute and the University of Sydney for their hospitality, and funding for multiple
research visits.

2. Conceptual summary
sec:conceptsum

We induce the genus zero Goldman-Turaev operations as “connecting homo-
morphisms” via a Snake Lemma application: this Section is a summary of the
basic approach. We use the words associated graded structures, homomorphic
expansions, and Goldman-Turaev operations without definition, only mentioning
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their basic properties which make this conceptual outline coherent; the definitions
follow in Section 3.

In the diagram (2.1), the right and left vertical maps are zero, and hence
their kernel and cokernel, respectively, are C and D. Therefore, by the Snake
Lemma, the middle vertical map λ induces a unique connecting homomorphism
η : C → D.

eq:Snakeeq:Snake (2.1)
A B C 0

0 D E F

0 λ 0

η

In Section 5 we present two constructions which produce the Goldman bracket
and the Turaev cobracket, respectively, as this connecting homomorphism η, from
corresponding tangle operations λ.

The end goal of this paper is to construct homomorphic expansions for the
Goldman-Turaev Lie bialgebra from the Kontsevich integral. In outline, this fol-
lows from the naturality property of the construction above, under the associated
graded functor. Namely, if all of the spaces in the diagram (2.1) are filtered and
the maps are filtered maps, then the associated graded functor (denoted gr) pro-
duces an associated graded commutative diagram with the same properties. An
expansion for an algebraic structure X is a filtered homomorphism Z : X → grX
(with special properties). Thus, if expansions exist for each of the spaces A
through F , we obtain a multi-cube:

eq:Cubeeq:Cube (2.2)

A B C 0

0 D E F

grA grB grC 0

0 grD grE grF

ZA λ ZB

ZC

η

ZD

grλ

gr η

ZE ZF
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= − − +

Figure 1. A knot with two double points written as a signed sum
four knots.fig:pumpkins

If, in the multi-cube (2.2) all vertical faces commute, then so does the square:

D C

grD grC

ZD

η

ZC

gr η

The commutativity of these squares for η representing the Goldman bracket and
the Turaev cobracket, respectively, is – by definition – the homomorphicity of the
expansion. This is the idea behind the proof of our main theorem.

3. Preliminaries: Homomorphic expansions and the
Goldman-Turaev Lie bialgebra

sec:Prelimssec:KInt
3.1. The Kontsevich Integral. The Kontsevich Integral is the knot theoretic
prototype of a homomorphic expansion. Homomorphic expansions (a.k.a. formal-
ity isomorphisms, universal finite type invariants) provide a connection between
knot theory and quantum algebra/ Lie theory. Many detailed expositions on the
Kontsevich Integral exist in the literature, we recommend [CDM12, Section 8],
or [Kon93, BN95, Dan10]. We briefly review the basics here from an algebraic
perspective, which is outlined – in a slightly different, finitely presentated case –
in [BND17, Section 2].

Let K denote the set of oriented knots in R3, and allow formal linear com-
binations of knots with coefficients in C. There is a filtration on this infinite
dimensional vector space called the Vassiliev filtration, which is defined in terms
of resolutions of double points. Namely, a double point is defined to be the differ-
ence of an over and under crossing:

= − .

A knot with k double points is a signed sum of 2k knots. See Figure 1 for an
example. The Vassiliev filtration is the decreasing filtration

K = K0 ⊇ K1 ⊇ K2 ⊇ ...

where Ki is linearly generated by knots with at least i double points.
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7→
ψ

Figure 2. Example of ψ mapping a chord diagram to a singular
knot where the right-hand side is viewed as an element of K3/K4.fig:psionchord

The degree completed associated graded space of K with respect to the Vassiliev
filtration is

A :=
∏
n≥0

Kn/Kn+1.

Since A is a graded vector space, it lends itself naturally to recursive calculations
and inductive arguments. The key idea of Goussarov and Vassiliev was to study
knots (the space K) via invariants which take values in A. An expansion Z is a
filtered linear map of knots taking values in A, which retains as much information
as possible. Rigorously, this means that the associated graded map of Z is the
identity map of A:

Z : K → A such that grZ = idA.

An expansion is homomorphic if it also intertwines knot operations (such as con-
nected sum) with their associated graded counterparts. This allows for a study
of these operations via the associated graded space as well.

A crucial step towards making effective use of this machinery is to get a handle
on the space A in concrete terms: namely, A has a combinatorial description as
a space of chord diagrams. A chord diagram of degree k on an oriented circle is
a perfect matching3 on a set of 2k points arranged around the circle, up to orien-
tation preserving diffeomorphism. The circle which supports the chord diagram
is called the skeleton. In other words, a chord diagram is a combinatorial object
consisting of 2k cyclically ordered points, partitioned into pairs. In diagrams,
each pair is indicated by a chord, as in the left of Figure 2.

There is a natural map ψ from chord diagrams with i chords to Ki/Ki+1, as
shown in Figure 2. Namely, by contracting each chord into a double point, we
obtain an i-singular knot. This is well-defined only up to crossing changes – as
there may be necessary crossings other than the double points – however, the
difference between the over/under choices for any additional crossing is in Ki+1.

It is not difficult to establish that Ψ is surjective, and that there are two
relations in its kernel: the 4-Term (4T) and Framing Independence (FI) relations,
shown in Figure 3. In fact, these two relations generate the kernel, and ψ descends
to an isomorphism on the quotient; this, however, is significantly harder to prove.

3A perfect matching on a set is a partitioning of the set by 2-element subsets.
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0
FI
=0

4T
=−++−

Figure 3. The 4T and FI relations, understood as local relations:
the strand(s) are part(s) of the skeleton circle, and the skeleton
may support additional chords outside the picture shown, which
are the same throughout all terms of the relation.fig:4TFI

The key technique – which we will refer to as the “yoga” – is to construct
an expansion as in the following Lemma 3.1. (This lemma is originally due to
[BND17, Proposition 2.7] which we restate here.)

lem:assocgradyoga Lemma 3.1 ( [BND17]). Let K be a filtered linear space of knotted objects4, and
A the associated graded space of K. Let C be a graded linear space (a “candidate
model” for A) equipped with a surjective graded map ψ : C → A. If there exists a
filtered map Z : K → C, such that ψ ◦ grZ = idA, then ψ is an isomorphism and
Z is an expansion for K.

K C A C

A A

Z

ψ

grZ

ψ◦grZ=idA ψ
gr

In other words, once one finds a candidate model C for A, finding an expansion
valued in C also implies that C is canonically isomorphic to A. In classical Vassiliev
theory, K is the space of oriented knots, C is the space of chord diagrams, and
the chord diagram valued expansion is the Kontsevich integral [CDM12, Section
8], [Kon93].

The original definition of the Kontsevich integral is by an explicit integral
formula associated to a Morse representation of the knot in C×R, as in Figure 4.

Definition 3.2. Let K be an oriented link in R3 ∼= Rt × C, where t denotes the
vertical real dimension, and the embedding K is Morse with respect to t: that is,

4“Knotted objects” may mean knots, links, tangles, knotted graphs, etc, depending on
context.
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z1 z
′
1

t1

t2

t3

t4
1

2

3

4

DP

Figure 4. The Kontsevich Integral is computed from a Morse
embedding of the knotfig:Kint

critical points occur at distinct heights. The Kontsevich integral Z(K) of K is:

eq:Kinteq:Kint (3.1) Z(K) :=
∞∑
m=0

∫
tmin<t1<...<tm<tmax

ti non−critical

∑
P={(zi,z′i)}i

(−1)P↓

(2πi)m
DP

m∧
i=1

dzi − dz′i
zi − z′i

.

Here the values tmin and tmax denote the minimum and maximum heights of K,
and each summand is an integral over an m-simplex determined by t1 < · · · < tm.
The summation is over choices P of “pairings” of two points on the knot of height
ti, each of which, when projected to the plane at t = 0, yields a complex pair
(zi, z

′
i). We denote by DP the chord diagram given by interpreting the m pairings

(zi, z
′
i) as chords, as shown in Figure 4. Finally, P↓ is the number of points in P

where (ti, zi) or (ti, z
′
i) is on a t-descending arc in K.

Kontsevich’s famous result [Kon93] is that Z(K) is an invariant of unframed
links, with image in the space of chord diagrams (on link skeleta) modulo the 4T
and FI relations. The Kontsevich integral Z satisfies Ψ ◦ grZ = idC . Therefore,
Ψ is an isomorphism, and Z is an expansion for unframed links. In addition, Z
has a number of good properties, for example, it is homomorphic with respect to
knot connected sum.

subsec:FramedKon
3.2. The framed Kontsevich Integral. Kontsevich’s original construction gives
an invariant of unframed links. However, in this paper we work primarily with
framed links and tangles, thus we briefly review the framed version; see also
[CDM12, Sections 3.5 and 9.1] and [LM96].

The first step is to construct a framed version of the Vassiliev filtration. Let K̃
denote the set of framed links in R3: that is, links along with a non-zero section
of the normal bundle. A knot diagram is interpreted as a framed knot using
the blackboard framing. The R1 move changes the blackboard framing, and by
ommitting it, one obtains a Reidemeister Theorem for framed links. In analogy
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with a double point, a framing change is defined to be the difference

:= − ↑ .

The framed Vassiliev filtration is the descending filtration

K̃ = K̃0 ⊇ K̃1 ⊇ K̃2 ⊇ ...

where K̃i is linearly generated by knots with at least i double points or framing
changes. The degree completed associated graded space of K̃ with respect to the
framed Vassiliev filtration is

Ã :=
∏
n≥0

K̃n/K̃n+1.

A natural first guess for a combinatorial description of Ã is in terms of chord
diagrams with “framing change markings” on the skeleton, graded by the number
of chords and markings. There is a natural surjective graded map ψ̃ from marked
chord diagrams onto Ã, which is defined like ψ for chords, and which replaces
each marking with a framing change . The kernel of ψ̃ includes the 4T relation
as before.

In place of the FI ( =0) relation, a weaker relation arises from the equality
− = in K̃. In fact, = − = ( − ↑) + (↑ − ), and ↑ − = − ↑ modulo

K̃2. In other words, the following relation is in the kernel of ψ̃:

= 2 .

Therefore, the framing change marking is not necessary, as it equals 1
2 . The

candidate model for the associated graded space is simply chord diagrams modulo
the 4T relation (and no FI relation). We denote this space by C̃.

To show that ψ̃ : C̃ → Ã is an isomorphism, the strategy is the same yoga
used before: construct a C̃-valued expansion and use Lemma 3.1. This C̃-valued
expansion is the framed version Z̃ of the Kontsevich integral. The definition is
similar to (3.1), the main issue is that in the absence of the FI relation, the
integral diverges at cups and caps. This is resolved with a renormalisation using
the framing, for details see [CDM12, Section 9.1], or [LM96,Gor99].

subsec:IntroGT
3.3. The Goldman-Turaev Lie bialgebra. Let Dp be the disc with p+1 disc
with boundary components ∂0, ∂1, ..., ∂p, with ∂0 a distinguished as an “outer”
boundary component, as in Figure 5. Let π = π1(Dp, ∗) denote the fundamental
group of Dp with basepoint ∗ ∈ ∂0. We denote by Cπ the group algebra of π, and
by Cπ = Cπ/C1 the linear quotient by the constant loop.

this paragraph should
move, or possibly be
deleted

Let π̃ = π̃∗ denote the group of immersed curves γ : ([0, 1], 0, 1) → (Dp, ∗, ∗)
under regular homotopy, so that γ̇(0) = γ̇(1) = ξ, as shown in Figure 5. Note
that π̃ is a group, although there are mild technicalities around the identity and
inverses. Denote by Cπ̃ the group algebra of π̃.

Are these technicalities
because of the tangent
vector? I feel like this
sentence begs more
questions than it answers.
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*

∂0
∂1 ∂2 ∂3

ξ

Figure 5. D3 with an immersed loop based at ∗ on ∂0, with
initial and terminal tangent vector ξ.fig:DP

Figure 6. Example of Goldman bracket. Dummy figure
inserted–this is not what figure we want here.fig:enter-label

For an algebra A we denote by |A| the linear quotient A/[A,A], where [A,A]
denotes the subspace spanned by commutators [x, y] = xy − yx for x, y ∈ A. We
denote the quotient (trace) map by | · | : A→ |A|.

We are particularly interested in the vector spaces |Cπ| and |Cπ| = |Cπ|/C1.
The latter has the structure of a Lie bialgebra given by the Goldman bracket [, ]G
and Turaev co-bracket δ. Given a framing on Dp, this structure lifts to |Cπ|, with
the bracket denoted the same (as it is given by the same formula), and cobracket
δ̃ [AKKN18b]. Note that |Cπ| has an explicit description as the C-vector space
generated by homotopy classes of free loops in Dp. For a free loop α in Dp and
a point q on α, we denote by αq be the loop α considered to be based at q.

def:bracket Definition 3.3 (The Goldman bracket). Let α, β be immersed representatives
of free loops in |Cπ|, with only transverse double intersections. The Goldman
bracket [·, ·]G : |Cπ| ⊗ |Cπ| → |Cπ| is given by

[α, β]G := −
∑
q∈α∩β

εq|αqβq|

where εq = ε(αq, βq) ∈ {±1} is the local intersection number of α and β at q, and
αqβq is the concatenation of αq and βq. This definition extends linearly to a Lie
bracket |Cπ|, and also descends to a Lie bracket [·, ·]G : |Cπ| → |Cπ| ⊗ |Cπ|.

The sign here (with the
minus sign in front)
matches with AKKN
genus 0, but is the
opposite of AKKN higher
genus and Goldman’s
original definition. Our
current multiplication
and bracket matches the
sign here, so if we change
the sign then we should
change the stacking order
of our multiplication.
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* * *

p
γ̇p1γ̇p2

µ

⊗

Figure 7. Example of the self intersection map µ where ϵp = +1.fig:defmu

The naive definition of the Turaev cobracket is analogous, except for using self
intersections of a curve rather than the intersections between two curves. This is
not well defined on |Cπ|, with respect to the Reidemeister 1 relation in particular.
It is well-defined on |Cπ|, and can be lifted to |Cπ| by a correction term which
uses a framing on Dp (a homotopy class of a trivialisation of the tangent bundle),
and the notion of rotation number for curves induced by the framing. Here we
review a slightly different, equivalent definition of δ, using self-intersections of
based curves, as in [AKKN18b, Section 5.2]. This definition is easier to directly
compare with the three-dimensional construction of δ and δ̃ in Section 5.

def:mu Definition 3.4 (The self-intersection map µ). Let γ : [0, 1] → Dp be an im-
mersed representative of a loop (based at ∗) in Cπ, with only transverse double
points, and let γ ∩ γ denote the set of such double points. The self intersection
map is:

µ : Cπ → |Cπ| ⊗ Cπ

µ(γ) = −
∑
p∈γ∩γ

εp|γtp1tp2 | ⊗ γ0tp1γt
p
21
,

where tp1, t
p
2 ∈ [0, 1] are the first and second time point where γ goes through p;

γrs denotes the part of γ from time r to s; and εp = ε (γ̇(tp1), γ̇(t
p
2)) ∈ {±1} is the

local self-intersection number.

Definition 3.5 (The Turaev co-bracket δ). The Turaev cobracket is defined as
the unique linear map which makes the following diagram commute:

Cπ |Cπ| ⊗ Cπ |Cπ| ⊗ |Cπ|

|Cπ| |Cπ| ∧ |Cπ|

µ

| · |

1⊗ | · |

Alt

δ

Here Alt(x⊗ y) = x⊗ y − y ⊗ x = x ∧ y.
The framed version is
probably not needed. If
needed, we should change
it to single base point.
For now I commented it
out.

Given a framing on Dp, there is a well-defined rotation number rot : π̃ → Z,
which descends to |π̃|. This allows for a lift of δ to |Cπ|. The following definition
is phrased differently but is equivalent to the one in [AKKN18b, Section 5.2].
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There is a natural quotient map q : Cπ → Cπ, with a section s : Cπ → Cπ,
such that the coefficient of the constant loop 1 in s(x) is 0 for x ∈ Cπ. Both the
quotient map and s descend naturally to |Cπ| and |Cπ|, also denoted q and s.

Definition 3.6 (The enhanced Turaev cobracket δ̃). The enhanced Turaev co-
bracket δ̃ : |Cπ| → |Cπ| ∧ |Cπ| is defined by δ̃(α) := s(δ(q(α))) + rot(α) · 1 ∧ α.

3.4. Associated graded Goldman-Turaev Lie bialgebra. There is a filtra-
tion on Cπ by powers of the augmentation ideal I = ⟨α− 1⟩:

Cπ = I0 ⊇ I ⊇ I2 ⊇ ...

which descends to a filtration on |Cπ|:
|Cπ| = |I0| ⊇ |I| ⊇ |I2| ⊇ ...

The completed associated graded algebra for |Cπ| with respect to this filtration,
gr |Cπ| =

∏∞
n=0 |In|/|In+1|, has an explicit description in terms of “cyclic words”.

Let Asc = Asc⟨x1, · · · , xp⟩ be the free associative algebra on r generators. Note
that elements |Asc | can be described as “cyclic words” in letters x1, · · · , xp, that
is, words modulo cyclic permutation of the letters. The following result is due
to [].

complete with citation:
Quillen66?

I couldnt find the
reference. Can you give
more info?

Proposition 3.7. There is an isomorphism of vector spaces

gr |Cπ| ∼= |Asc |
which becomes an isomorphism of Lie bialgebras when |Asc | is equipped with an
appropriate bracket and cobracket structure, which we call the (graded) Goldman
bracket and Turaev cobracket.

def:grbracket Definition 3.8. [The graded Goldman bracket]Let z = z1 · · · zl and w = w1 · · ·wm
be two cyclic words in |Asc |. The graded Goldman bracket

[−,−]grG : |Asc | ⊗ |Asc | → |Asc |
of z and w is given by:

[z, w]grG =
∑
j,k

δzj ,wk
(w1 . . . wk−1zj+1 . . . zlz1 . . . zjwk+1 . . . wm−

w1 . . . wk−1zj . . . zlz1 . . . zj−1wk+1 . . . wm)

where δzj ,wk
is the Kronecker delta.

By representing cyclic words diagrammatically as letters along a circle, the
graded Goldman bracket sums over matching pairs of letters in z and w, joins
the circles at the matching letter, and takes the difference of the two ways of
replacing one copy of the letter in the new cyclic word. This is shown in Figure 8.

Definition 3.9 (The graded Turaev cobracket). Let w = w1 . . . wm ∈ |Asp|. The
graded Turaev cobracket

δgr : |Asc | → |Asc | ∧ |Asc |



GOLDMAN-TURAEV FORMALITY FROM THE KONTSEVITCH INTEGRAL 13

x x

grG, =
∑

matching
pairs of letters

−
x

x

Figure 8. The graded Goldman bracket.fig:grbracket

x

x

x − x

Figure 9. An example pairing cut.fig:paircut

on w is given by

δgr(w) =
∑
j<k

δwj ,wk
(|wj . . . wk−1| ∧ |wk+1 . . . wnw1 . . . wj−1|+

|wk . . . wnw1 . . . wj−1| ∧ |wj+1 . . . wk−1|).

Diagrammatically, the cobracket can be computed by a summation of pairing
cuts, an example of which is given in Figure 9. The sum of wedge products in the
definition of the cobracket is given by the sum of taking the cut with one element
of a matching pair at the top of the circle, then taking the cut with the other
element at the top of the circle.

4. Expansions for tangles in handlebodies
sec:TangleSetUp

4.1. The space CT̃ . In this paper we consider the space CT̃ of framed, oriented
tangles in a genus p handlebody, and show that homomorphic expansions on this
space descend to homomorphic expansions on the Goldman-Turaev Lie biagebra
as defined in [AKKN20]. This section describes the space CT̃ .

Let Mp denote the manifold Dp × I where Dp is a disc with p points removed.
While Mp is not a compact manifold, knot theory in Mp is equivalent to knot
theory in a genus p handlebody. For the purpose of the Kontsevich integral, we
identify Dp with a square in the complex plane with p points removed, so Mp can
be drawn as a cube with p vertical lines removed; we call these lines the poles, as
shown in Figure 11. We refer to Dp×{0} as the “floor” or “bottom”, and Dp×{1}
as the “ceiling” or “top”. The “back wall” is the north (i ∈ C) edge of Dp times
[0, 1].

def:tangle Definition 4.1. An oriented tangle T in Mp is an embedding of an oriented
compact 1-manifold

(S, ∂S) ↪→ (Mp, Dp × {0} ∪Dp × {1}).
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(1, 0) (5, 0) (1, 0) (5, 0)

Figure 10. On the left is a tangle in M2, and on the
right is schematic diagram of the skeleton of the tan-
gle. The skeleton of the tangle is the combinatorial data
given by the following set of order pairs and the integer 1:
{[((2, 0), 0), ((1, 0), 0))], [((3, 0), 0), (4, 0), 0))], [((5, 0), 1), (5, 0), 0))], 1}

.fig:skeleton

The interior of S lies in the interior of Mp, and the boundary points of S are
mapped to the top or bottom. Oriented tangles in Mp are considered up to
ambient isotopy fixing the boundary. We denote the set of isotopy classes by T .

Definition 4.2. A framing for an oriented tangle T in Mp is a continuous choice
of unit normal vector at each point of T , which is fixed pointing in the north
(i ∈ C) direction at the boundary points. Framed oriented tangles in Mp are
considered up to ambient isotopy fixing the boundary. We denote the set of
isotopy classes of framed oriented tangles by T̃ .

Henceforth, any tangle is assumed to be framed and oriented unless otherwise
stated. The skeleton of a tangle is the underlying combinatorial information with
the topology forgotten:

def:skeleton Definition 4.3. The skeleton σ(T ) of a tangle T = (S ↪→Mp) – see Figure 10 –
is the set of tangle endpoints Pbot ⊆ Dp × {0} and Ptop ⊆ Dp × {1}, along with

(1) A partition of Pbot∪Ptop into ordered pairs given by the oriented intervals
of S.

(2) A non-negative integer k: the number of circles in S.
Maybe it would be better
to define Pbot, Ptop ⊆ Dp

and then say Pbot × {0}
and P⊤ × {1} are the
tangle endpoints. Then it
would make descriptions
of tangle operations
easier, as well as the info
in figure 9.

The skeleton of a framed tangle is the same as the skeleton of the underlying
unframed tangle. The set of framed tangles in Mp on skeleton S is denoted T̃ (S).
For example, T̃ ( ) is the set of framed knots in Mp.

The linear extension of T̃ (S), denoted CT̃ (S), is the vector space of C-linear
combinations of tangles in T̃ (S). We denote by CT̃ the disjoint union ⊔S T̃ (S)
over all skeleta S, identified at 0. Tangles with different skeleta cannot be linearly
combined.

We can look at tangles in Mp using tangle diagrams in two different ways, by
projecting either to the back wall of Mp or to the floor.

If we project to the back wall, an ℓ-component tangle in Mp can be diagram-
matically represented as a tangle diagram with p straight vertical “poles”, and ℓ
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Figure 11. An example of a tangle in M3, drawn first in a han-
dlebody, secondly in a cube with poles, and lastly as a tangle
diagram projected to the back wall of the cube.fig:polestudio

Figure 12. An example of a tangle in M3 projected to the floor.
Strands of a tangle diagram can pass over bottom endpoints (dot)
or under top endpoints (star).need to add arrow and equal signsfig:BottomDiagram

tangle “strands” of circle and interval components. The strands pass over (in front
of) and under (behind) the poles and other strands, as shown on the right in Fig-
ure 11. The poles are equipped with an orientation coming from the parametriza-
tion in Mp

∼= Dp × I, and in figures we draw them oriented upwards, unless
otherwise stated. By Reidemeister’s theorem, T̃ is equivalent to such diagrams
modulo the Reidemeister moves R2 and R3. (No R1, as the tangles are framed.)

on the the left hand side
of this figure something
is missing

By projecting instead to the floor Dp × {0} of the cube, a tangle in Mp is
represented by a tangle diagram in Dp. The R2 and R3 moves continue to apply.
The endpoints of the tangle are fixed: bottom endpoints are denoted by dots,
top endpoints are denoted by stars. Strands of the tangle diagram can pass over
bottom endpoints, or under top endpoints, as shown in Figure 12. However, the
strands cannot pass over the punctures in Dp.
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flip−−→

Figure 13. A tangle in M2 and its flipfig:flip

sec:opsonT
4.2. Operations on T̃ . There are several useful operations defined on T̃ . These
operations extend naturally to CT̃ , and are used in section 5 to relate quotients
of CT̃ to the Goldman-Turaev Lie bialgebra.:

check this section
reference after Section 4
is finalised

• Stacking: Given tangles T1, T2 ∈Mp, if the top endpoints of σ(T1) match
the bottom endpoints of σ(T2) in Dp, and the orientations on the strands
of T1 and T2 agree at the matching endpoints, then we can stack T2 on
top of T1 and shrink the height to get a new tangle T1T2 ∈Mp.

• Strand addition: The strand addition operation adds a non-interacting
additional strand to a tangle T at a point q ∈ Dp to get a new tangle
T⊔q ↑. More precisely, pick a contractible U ⊆ Dp such that T is con-
tained entirely in U × [0, 1] and a point q ∈ Dp outside of U . The tangle
T⊔q ↑ is T together with an upward-oriented vertical strand q × I at q.

• Strand orientation switch: This operation reverses the orientation of a
given strand of the tangle.

• Flip: Given a tangle T inMp, the flip of a tangle T inMp, denoted T , is the
mirror image of T with respect to the ceiling, as shown in Figure 13. When
T is flipped, each top boundary point (q, 1) becomes a bottom boundary
point (q, 0), and vice versa. The orientations and framing of the strands
of T are reflected along with the strands. However, the orientations of the
poles remain ascending. Equivalently, we can define the flip operation as
reversing the parametrisation of I in Mp

∼= Dp × I. This, in effect, flips
the orientation of the poles but changes nothing else.

In section ??, we relate commutator of tangles with respect to stacking, given
by [T1, T2] = T1T2 − T2T1, to the Goldman bracket, and in section ?? we relate
the flip operation to the Turaev cobracket.

sec:t-filtration
4.3. The t-filtration on T̃ and the associated graded Ã. There are different
filtrations on the space CT̃ that one might consider in setting up a Vassiliev theory.
In line with classical notation of Vassiliev invariants, we denote by a double point
the difference between an over-crossing and an under-crossing:

= −
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In the context of tangles in Mp, double points come in two varieties: pole-strand,
if the crossing occurs between a pole and a tangle strand, and strand-strand, if
the crossing occurs between two tangle strands.

The main filtration we consider on CT̃ is the filtration by the total number of
double points of either type, as well as strand framing changes (as described in
Section 3.2). We call this the total filtration, or simply t-filtration, and write it as

CT̃ = T̃0 ⊇ T̃1 ⊇ T̃2 ⊇ T̃3 ⊇ · · ·

where T̃t is the set of linear combinations of framed tangle diagrams with at least
t total double points and strand framing changes. Note that while the filtration
is defined using tangle diagrams, the filtration respects R2 and R3 moves, and
hence descends to tangles; that is, different diagrams for the same tangle live in
the same filtered component.

Definition 4.4. The associated graded space of CT̃ with respect to the total
filtration is

Ã := grCT̃ =
∏
t≥0

T̃t/T̃t+1.

The degree t component of Ã is Ãt := T̃t/T̃t+1.

rem:2frame=double Remark 4.5. Modulo T̃2, = − ↑=↑ − . As a result, in Ã, a framing change
can always be represented as 1

2 a double point as

= − = ( − ↑) + (↑ − ) = 2 .

As in classical Vassiliev theory (cf. section 3.2), the associated graded space Ã
has a combinatorial description in terms of chord diagrams.

Definition 4.6. A chord diagram on a tangle skeleton is an even number of
marked points on the poles and skeleton strands, up to orientation preserving
diffeomorphism, along with a perfect matching on the marked points – that is,
a partition of marked points into unordered pairs. In diagrams, the pairs are
connected by a chord, indicated by a dotted line, as in Figure 14(A).

def:admissible Definition 4.7. A chord diagram is admissible if all chords connect strands to
strands, or strands to poles. That is, there are no pole-pole chords in an admissible
diagram, see Figure 14(A) for an example.

def:cdspace Definition 4.8. The space D(S) of admissible chord diagrams on a diagram S is
the space of C-linear combinations of admissible chord diagrams on the skeleton
S factored out by admissible 4T relations, shown in Figure ??. Admissible 4T
relations are 4T relations in the classical sense, subject to the condition that all
four terms are admissible5. That is,

Do we need the concept
of “admissible 4T”? Since
4T is a relation, so just
saying “admissible chord
diagrams mod 4T” would
only apply 4T to
admissible diagrams?

5Equivalently, a 4T relation is admissible if at most one of the three skeleton components
involved is a pole.
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(A) Two chord diagrams: an admissible one (left) that doesn’t contain any pole-pole
chords, and non-admissible one (right) that does contain a pole-pole chord.fig:AdmissibleNonAdmissible

= 0+ − −

(B) The 4T relation, which is admissible if at most one of the three skeleton components
is a pole.fig:Admissible 4T

Figure 14. Examples of admissible and non-admissible chord di-
agrams, and the 4T relationfig:admissible

D(S) =

{
linear combinations of admissible chord diagrams on S

}{
admissible 4T relations

}
The space D(S) is a graded vector space, where the degree is given by the number
of chords. Denote the degree t component of D(S) by Dt(S). Let D be the
disjoint union ⊔SD(S), identified at 0. We denote the degree t component of D
by Dt = ⊔SDt(S).

thm:tassocgraded Theorem 4.9. There is a canonical isomorphism D ∼= Ã.

To prove this Theorem, we use the isomorphism familiar from classical finite
type theory

ψ : D → Ã
In degree t, ψt : Dt → T̃t/T̃t+1, is defined as before by contracting chords to double
points, as shown in Figure 15. This may create other crossings, but modulo T̃t+1

it does not matter which skeleton component is over or under at these crossings.
We prove that ψ is an isomorphism by showing that it’s well-defined and sur-

jective, then using lemma 3.1 to show that it’s an isomorphism.

Lemma 4.10. The map ψ is well-defined and surjective.

Proof. To show ψ is well-defined, it suffices to show that admissible 4T relations
in Dt are in the kernel of ψ. This is shown in Figure 16. For surjectivity, a framing
change in Ã can always be written as one half a double point, as described in
Remark 4.5. So all framing changes are in the image of ψ, and ψ is surjective.

□

thm:Zwelldefined Lemma 4.11. The Kontsevich integral Z is a well-defined filtered map from CT̃
to D such that ψ ◦ grZ = idÃ.
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7→
ψ

Figure 15. Example of ψ with the right hand side viewed as an
element of T̃3/T̃4. Different choices of over or under crossings with
the poles only differ by elements of T̃4.fig:psi

ψ − + + − = − + + −

= − = 0

Figure 16. The proof that ψ : D → Ã is well defined. The
figure is understood locally: If the figure is a map in the degree t
component, then the chord diagrams have t− 2 other chords that
are not shown but in the same position throughout all four terms,
and similarly, the tangles have t− 2 other double points that are
not shown, but in the same positions throughout all the terms.fig:psicomputation

Proof. The image of Z on an element in CT̃ will be a chord diagram on a skeleton
with p poles and some number of circles. Since the poles in Mp are parallel, any
pair of points (zi, z′i) on the poles will be constant, the form dzi−dz′i = 0, and the
contribution to the integral will be zero. Therefore chord diagrams in the image
of Z don’t contain pole-pole chords, so they are always admissible. So Z indeed
always lands in D.

It remains to show that ψ ◦ grZ = idÃ.

CT̃ D Ã D

Ã Ã

Z

ψ

grZ

ψ◦grZ=idÃ ψ
gr
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Recall that for a filtered map f : A → B, the associated graded gr f : grA →
grB is defined on graded components by [a] ∈ At/At+1 7→ [f(a)] ∈ Bt/Bt+1. We
consider grZ : Ã → D. Let [T ] ∈ T̃t/T̃t+1 so that is T is a tangle in Mp with at
least t double points. Note that it’s always possible to pick such a representative,
since a framing change can be written as 1

2 times a double point in T̃t/T̃t+1. Then
Z(T ) is a sum of chord diagrams with e

C
2 − e−

C
2 at each chord C corresponding

to each double point in T . All terms with degree less than t are zero, so the value
of grZ(T ) depends only on the degree t term of Z(T ). The degree t term is a
single chord diagram with a single chord for each double point, so applying ψ to
this turns all the chords back to double points, which up to crossing changes in
T̃t+1, is just [T ]. Therefore ψ grZ = idÃ. Since ψ grZ = idÃ. □

The next corollary is immediate from lemma 3.1.

Corollary 4.12. The map ψ : D → Ã is an isomorphism and Z is an expansion
for T̃ .

Now it is established that Ã can be identified with the space of admissible chord
diagrams D. For a skeleton S, define Ã(S) to be the space of admissible chord
diagrams on the skeleton S, so that Ã(S) is the associated graded of CT̃ (S). For
example, Ã( ) is the associated graded of CT̃ ( ), the space of knots in Mp.Explain here about the

general notation of t’th
component of filtration?

I added this paragraph
because we need to define
A( ) somewhere. This
definition has to come
after the theorem that
D ∼= Ã, but it feels weird
to have it right here. It
also needs to be
improved. Suggestions?

We could define Ã(S) as
the associated graded of
CT̃ (S) and put it where
we define associated
graded. Then we can
define D(S) and make
theorem 3.7 say
D(S) ∼= Ã(S) which
would be a bit more clear
as well?

4.4. Operations on Ã. The operations stacking, increase, and flip on T induce
operations by the same names on Ã. In view of theorem 4.9, we give descriptions
of these operations using chord diagrams.

The operation stacking is given by stacking D1 on top of D2 to get D1D2,
and the operation strand addition on a diagram D adds a new skeleton strand
without any marked points at a specified point p to give D⊔p ↑. It is clear from
the definition of ψ that these are indeed the correct chord diagram descriptions
of these operations, and as in T , they are only defined when the endpoints of D1

and D2 match appropriately, and when p is an appropriate point to pick.
The operation flip reflects a chord diagram with respect to a “mirror on the

ceiling", reverses the orientations of the poles so that they are the same as they
were originally, and adds a factor of (−1)m, wherem is the total number of marked
points on the poles. The factor of (−1)m comes from the fact that reversing the
orientation of one strand at a double point is the same as multiplying by a factor
of −1. See figure ....[include figure]

describe the associated
graded operations of all
the tangle operationsprop:Zhomom Proposition 4.13. The Kontsevich integral Z is homomorphic with respect to

stacking, strand additions and flips.

Proof. It is clear for stacking and strand addition. When the orientation of the
poles are reversed, every chord diagram DP in the output of the Kontsevich
integral will be multiplied get (−1)m, where m is the total number of chord
endings on poles, because m points in P will change whether they are on a
descending arc or not, so P↓ will change by m mod 2.
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□
sec:s-sfiltration

4.5. The s-filtration on T̃ and Ã. As described in Section 4.3, the space CT̃
(and therefore Ã) has a total filtration given by strand framing changes and double
points of either type, strand-pole and strand-strand. In this section we look at
a second filtration on CT̃ and Ã, where we still look at strand framing changes,
but only consider the number of strand-strand double points. This filtration will
be called the strand filtration, or simply s-filtration. The s-filtration is given by

CT̃ = T̃ 0 ⊇ T̃ 1 ⊇ T̃ 2 ⊇ T̃ 3 ⊇ · · ·
where T̃ s ⊆ CT̃ are linear combinations of link diagrams with at least s strand
framing changes and strand double points.

Remark 4.14. We do not consider the full associated graded of CT̃ with respect
to the s-filtration, but instead use it to identify the Goldman-Turaev spaces in
low degrees in section ??. The associated graded of CT̃ with respect to the
s-filtration has been studied by Habiro and Massuyeau in [HM21], where they
consider “bottom tangles”. Note the language – if we project to the “bottom”
instead of the “back wall”, then all double points are of type strand-strand, so the
s-filtration is just the usual Vassiliev filtration if we project to the bottom.

The s-filtration also induces a filtration on Ã as follows. Combining the nota-
tions for the t- and s-filtrations, let T̃ s

t denote the set of linear combinations of
tangle diagrams in CT̃ that have at least t double points, at least s of which are
strand-strand.

def:filtrationQuotientNotation Definition 4.15. The s-filtered component of Ã denoted Ã≥s :=
∏

T̃ s
t /T̃ s

t+1 is
the set of linear combinations of chord diagrams with at least s strand-strand
chords, or rather at least s chords between the non-pole skeleton components.
Let T̃ /s := CT̃ /T̃ s Let Ã/s := Ã/Ã≥s.

maybe this is a (trivial)
propositionProposition 4.16. The Kontsevich integral Z respects the s-filtration.

Proof. Does this follow immediately from Theorem 4.11– as Z is an expansion
with respect to the total filtration, so it certainly plays nice with the s-s filtration.

□
write this proof in a
non-questioning way.

definition? remark?
better not to say it at all?

sec:notation
4.6. Notation conventions. Throughout this paper we consider the t and s
filtrations on CT̃ and Ã, as well as on their various quotients and subspaces. We
summarize the notation from this section below:

• CT̃ is the space of C-linear combinations of framed tangles in Mp

• CT̃ ( ) is the space of C-linear combinations of of framed knots in Mp

• T̃t is the t’th filtered component of CT̃ with respect to the t-filtration,
which contains all linear combinations of framed tangles in Mp with at
least t double points(both strand-strand and strand-pole types) and fram-
ing changes
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• T̃ s is the s’th filtered component of CT̃ with respect to the s-filtration,
which contains all linear combinations of framed tangles in Mp with at
least s strand-strand double points and framing changes

• T̃ s
t := T̃t ∩ T̃ s, which is the set of elements of CT̃ with at least s framing

changes and strand-strand double points, and at least t framing changes
and double points of any type.

• T̃ /s := CT̃ /T̃ s, which is the set of elements in CT̃ with at most s strand-
or s-1?

strand double points and framing changes
• T̃ 1/2 := T̃ 1/T̃ 2, which is the set of elements in CT̃ with at exactly 1

strand-strand double point or framing change
• Ã is the associated graded space of CT̃ under the t-filtration, and is the

space of admissible chord diagrams modulo admissible 4T relations
• Ãt := T̃t/T̃t+1 is the degree t component of Ã which consists of all admis-

sible chord diagrams in Ã with exactly t chords
is this correct?

• Ã≥s :=
∏
t T̃ s

t /T̃ s
t+1 is the s’th filtered component of Ã

• Ã/s := Ã/Ã≥s
not sure if we use the
T̃ /s and Ã/s notations
enough to justify having
them

Theses notations are extended to subspaces and quotients of CT̃ and Ã in the
natural way.

Not sure if T̃ /s and Ã/s

are relevant enough to be
included here. I think
they are only used for
s = 1. We also sometimes
use for example T̃ 2/T̃ 1,
which doesn’t have a
shorthand, so maybe T̃ /s

should be T̃ s/T̃ s+1 or
something (i.e. degree s
component of the
s-associated graded)

sec:HOMFLY
4.7. The Conway quotient. In this section we introduce the Conway quotient
of CT̃ : essentially, a Conway skein module of tangles in Mp without fixing the
value of the unknot. The Conway relation respects the t and s filtrations and the
Kontsevich integral descends to the Conway quotient.

Definition 4.17. The Conway quotient of CT̃ is defined as

CT̃∇ := CT̃ JaK
/

− = (e
a
2 − e−

a
2 ) ,

where a is a formal variable that has t and s degree 1 so that the skein relation pre-
serves both t and s filtrations. The skein relation is applied only to strand-strand
crossings, not strand-pole crossings. We will use the variable b as a shorthand for
b = e

a
2 − e−

a
2 .

The t and s filtrations on CT̃ induce filtrations on CT̃∇. Following the notation
conventions in Section 4.6, let T̃∇,t denote the t’th filtered component of CT̃∇ and
Ã∇ := grt CT̃∇ =

∏
T̃∇,t/T̃∇,t+1 denote the associated graded algebra of CT̃∇ with

respect the total filtration. We now show that Ã∇ has a diagrammatic description
similar to Ã, where Ã ∼= D as in Theorem 4.9.

Definition 4.18. Let

D∇ := DJaK
/

= a , = a

where a is a formal variable of degree 1 as above, and the relations locally apply
only when all skeleton components involved are strands, not poles.
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Note that the quotient relations in D∇ preserve the t-grading on D and the
grading descends to D∇. The next theorem shows that Ã∇

∼= D∇. This theorem
essentially follows from the results of [LM95], and we present a brief direct proof.

thm:Z_conway Theorem 4.19. The Kontsevich integral descends to an expansion Z∇ : CT̃∇ →
D∇ and Ã∇

∼= D∇.

This proof uses R1, so I
don’t know how a framed
analogue works exactly,
and also not sure that we
need it. I commented it
out for now.
I believe this theorem is
correct with framing
changes. Please double
check.

Proof. This proof follows the general schema introduced in Section 3.1, in partic-
ular Lemma 3.1 and the map ψ, which assigns singular tangles to chord diagrams.

First we show that ψ descends to a graded surjection ψ : D∇ → Ã∇. To show
that ψ is well-defined, we need to show that the Conway relation in D∇ is in the
kernel. Locally,

ψ
(

− a
)
= − a ,

and denote the (global) total degree on both sides by t. In other words, the
(global) right hand side is interpreted as an element of T̃H,t/T̃H,t+1. Using the
Conway skein relation in Ã∇, the right had side can be simplified

− a = (e
a
2 − e−

a
2 ) − a = (e

a
2 − e−

a
2 − a) + a( − )

Observe that a( − ) and the lowest degree term of e
a
2 − e−

a
2 − a are both of

degree 2, hence ( − a ) ∈ T̃H,t+1, and therefore is zero in T̃H,t/T̃H,t+1.

We now verify that the Kontsevich integral Z descends to the quotient CT̃∇ by
checking the relations in CT̃∇ directly. Recall that Z(!) = (e

C
2 )P and Z(") =

(e−
C
2 )P, where C denotes a chord, the exponential is interpreted formally as

a power series, and Ck denotes stacking k chords as shown below. Using the
Conway relation, we compute:

Ck = k = ak k = ak( )k =


ak , if k is even

ak , if k is odd
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Now applying Z to the left hand side of the Conway relation, we obtain

Z( )− Z( ) = (e
C
2 − e

−C
2 )

=
∞∑
k=0

(
Ck

2kk!
− (−1)kCk

2kk!

)

=
∞∑
k=0

C2k+1

22k(2k + 1)!

=
∞∑
k=0

a2k+1

22k(2k + 1)!

=
∞∑
k=0

a2k+1

22k(2k + 1)!

= (e
a
2 − e−

a
2 )

= Z
(
(e

a
2 − e−

a
2 )

)
.

Thus, Z is well-defined on the Conway quotient CT̃∇.
Therefore, by Lemma 3.1, Z is a homomorphic expansion for CT̃∇ and ψ :

D∇ → Ã∇ is an isomorphism. □

While our main focus is the t-filtration on CT̃∇ and its associated graded space
Ã∇, the low degree components of the associated graded of CT̃∇ with respect to
the s-filtration also show up. In particular, there is a well-defined “division by b”
map qb : T̃

/2
∇ → T̃ /1

∇ which restricts to an isomorphism on T̃ 1
∇/T̃ 2

∇ . We now show
that this map exists by defining it explicitly.

Proposition 4.20. For a tangle T and a crossing x of T , let ϵ(x) ∈ {±1} be the
sign of x, and T |x→a be the tangle T with x replaced by a smoothing. There is a
well defined map qb : T̃

/2
∇ → T̃ /1

∇ given by the linear extension of the following:

bT
qb7→ T

T
qb7→ 1

2

∑
x crossing of T

ϵ(x)T |x→a

Proof. It is straightforward to check that Reidemeister moves are preserved.We
It’s straightforward to
check R moves so I don’t
check it explicitly. Is this
fine?

also need to check that T̃ 2
∇ and the Conway relation are in the kernel. For bkT ∈

T̃ 2
∇ , if k = 1, then T ∈ T̃ 1

∇ , so qb(bT ) = 0. If instead k = 0, then T has at
least two double points. Replacing a crossing by a smoothing only changes the
crossing that is replaced, so other crossings (and therefore double points) remain
unchanged. Therefore qb(T ) can be written as a sum where each term has at least
one double point, so qb(T ) = 0 as well.

To show that the Conway relation also vanishes, note that the terms in qb( ) =
qb(!−") come from either smoothing a crossing that is a part of the double point,
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or smoothing a crossing that is not. In the latter, the double point remains as
before, so those terms are in T̃ 1

∇ . The only remaining terms are those where the
crossings forming the double point are smoothed, so we get

qb
(

−
)
=

1

2
− (−1)

1

2
= = qb

(
b

)
so qb is well-defined. □

cor:divbyb Corollary 4.21. The map qb restricts to an isomorphism qb : T̃
1/2
∇ → T̃ /1

∇ .
do we need this proof?

Proof. It is clearly surjective. To show it’s injective, note that the restriction is
simply given by bT 7→ T , and if T ∈ T̃ 1

∇ , then bT ∈ T̃ 2
∇ . □

cor:grdivbyb Corollary 4.22. The associated graded of qb is an isomorphism gr qB”Ã1/2 →
Ã/1 given by

drawing the chord diagram as with one s-s chord, smoothing that chord using
∇ and getting a factor of b with no remaining s-s chords, and then diving off the
b

Clean up

add the following
discussion

We should add a discussion here about how the Conway relation occurs in
degree 1, so T̃ /1

∇
∼= T̃ /1 but this is not true for higher degree quotients. Also,

we should discuss how the Conway relation changes the skeleton, and set up
what ever specific scenario we need to describe the Goldman Bracket in the next
section.

Specify that when we say T̃∇( ) we there is a representative which is expressed
in terms of knots and no factors of b– the greading comes from the actual skeleton,
not from factors of b

5. Identifying the Goldman-Turaev Lie bialgebra
sec:IdentifyingGTinHOM

We identify the Goldman-Turaev Lie bialgebra in low s-degree quotients of the
Conway quotient, and show that the Kontsevich integral induces a homomorphic
expansion on this space with respect to the s-filtration. Appealing to the schema
summarized in Section 2 the approach presented here is to create diagrams like
the one in Equation 2.1 where the induced maps η’s are the Goldman bracket
and the self intersection map µ from which the cobracket is constructed.

5.1. The Goldman Bracket. Recall from Section 3.3 thatDp is the p-punctured
disc, π is its fundamental group, and |Cπ| is the linear quotient |Cπ| := Cπ/[Cπ,Cπ].
As a vector space over C, |Cπ| is generated by homotopy classes of free loops in
Dp. The Goldman bracket is a map |Cπ| ⊗ |Cπ| → |Cπ| with formula given in
Definition 3.3. Recall from Section 4.7 the space CT̃ ( ) is the vector space of
C-linear combinations of framed knots in Mp = Dp × I.

prop:BotProj Proposition 5.1. The bottom projection in Mp → Dp × {0} induces a filtered
map

β : CT̃ ( ) → |Cπ|
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by projecting to free loops in Dp × {0}.

Proof. By the Reidemeister Theorem, knots in CT̃ ( ) are faithfully represented
by knot diagrams in Dp × {0} – that is, regular projections to the bottom with
over/under information – modulo the Reidemeister moves (R2, R3). The map
β maps the Reidemeister moves for knots to the corresponding moves generat-
ing homotopies between framed free loops. The map β also forgets the framing
information: that is, further quotients by the R1 move for curves. The map β
is clearly surjective as any loop can be lifted to a knot by introducing arbitrary
under/over information at the crossings.

The statement that β is filtered means that step k of the the Vassiliev t-
filtration in CT̃∇( ) projects into step k of the filtration on |Cπ| induced by
the I-adic filtration of Π. Note that strand-strand double points and framing

What do we mean by Π

here? do we mean ΠkI
k? changes map to 0 in |Cπ|, thus we only have something to prove for knots with k

strand-pole double points.
Let γ1, ..., γp denote the generators of π, that is, γi is a simple curve ∂i, starting

and ending at the base point. A knot in CT̃ ( ) maps to a free loop, whose
conjugacy class in π is represented as a product of the generators γi in π. A pole-
stand double point on pole j maps to a difference between two curves passing on
either side of ∂j , and the words in π representing these curves differ in a single
instance of γj . Thus, knot with k pole-strand double points maps to a product
with k factors of the form ±(γj−1), while the other factors are single generators.
This is by definition an element in Ik. □

prop:kerbeta Proposition 5.2. The kernel of the projection β is T̃ 1( ), and β descends to an
isomorphism β : T̃ /1( ) → |Cπ|.

Proof. Two framed knots in CT̃ ( ) project to the same loop in |Cπ| if and only
if they differ by framing changes and (strand) crossing changes, which generate
precisely the step 1 of the s-filtration, that is, T̃ 1( ). □

cor:loopsasknots Corollary 5.3. The map β descends to an isomorphism β : T̃ /1
∇ ( ) → |Cπ|.

Proof. T̃ /1( ) ∼= T̃ /1
∇ ( ) as the Conway relations occur in degree 1. □

Corollary 5.3 successfully identifies |Cπ| as a quotient of knots. We now look
to the associated graded space Ã to find algebraic cyclic words |Asc |. As a
reminder, Ã is the associated graded space of CT̃ with respect to the t-filtration,
Ã ∼= grtCT̃ , and Ã is further filtered by the s-filtration. Recalling definitions
4.15 and 4.8, Ã( ) is the space of admissible chord diagrams on a circle skeleton,
Ã1( ) is the s-degree 1 filtered component of Ã( ), and Ã/1( ) is its quotient of
Ã( ) by Ã1( ). Recall from Section 3.3 that Asc = Asc⟨x1, · · · , xp⟩ denotes the
free associative algebra over C, and its linear quotient |Asc | = Asc /[Asc,Asc]
is the C-vector space generated by cyclic words in p letters. Since |Asc | is the
associated graded of |Cπ|, we take the associated graded (with respect to the
t-filtration) of the projection β above to find |Asc |.
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T̃ 1/2
∇ ( )⊗ T̃ 1/2

∇ ( ) T̃ /2
∇ ( )⊗ T̃ /2

∇ ( ) T̃ /1( )⊗ T̃ /1( ) 0

0 T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ /1( )

0 0

η

λ

Figure 17. The nontrivial horizontal maps are the respective
quotient maps.fig:Snakeforbracket

Proposition 5.4. The associated graded map grβ : Ã( ) → |Asc | has kernel
Ã1( ). Hence, grβ descends to an isomorphism grβ : Ã/1( ) → |Asc |.

Proof. This follows from the fact that β is a filtered map, and fits into the filtered
short exact sequence

0 → T̃ 1( ) → T̃ ( ) → |Cπ| → 0.

The statement follows from applying the associated graded functor to this se-
quence. □

put β on the arrow

Add remark about how
you can read off a cyclic
word from a chord
diagram with no s-s
chords. This is not
needed for any proofs,
but is interesting for
intuition.

We define two maps λ1, λ2 : T̃ /2
∇ ( ) ⊗ T̃ /2

∇ ( ) → T̃ /2
∇ ( ) ⊗ T̃ /2

∇ ( ) given
by λ1(K1 ⊗ K2) = K1K2 and λ2(K1 ⊗ K2) = K2K1 (stacking the diagrams
in different orders). Then lastly λ = λ1 − λ2 is essentially the commutator on
T̃ /2
∇ ( )⊗ T̃ /2

∇ ( )

thm:bracketsnake Theorem 5.5. The diagram in 17 commutes. Moreover, the induced connecting
homomorphism η is the Goldman Bracket.

Proof. For K1 ⊗K2 in T̃ /2
∇ ( )⊗ T̃ /2

∇ ( ),

λ(K1 ⊗K2) = λ1(K1 ⊗K2)− λ2(K1 ⊗K2) = K1K2 −K2K1.

Let a tangle diagram for K1K2 given by projection to the bottom. Let a mixed
crossing of such a diagram be a crossing where one strand belongs to K1 and the
other strand belongs to K2. Since the product in CT̃ is vertical diagram stacking,
we can changeK1K2 toK2K1 by passing all the strands ofK2 through the strands
of K1, that is, by flipping every mixed crossing. Using the double point notation,
we can write positive mixed crossings as + and negative mixed crossings

as − , where each double point has one strand belongs to K1 and the
other belongs to K2. Rewriting all the mixed crossings of K1K2 in this way yields
a sum of tangles indexed by the subsets of the mixed crossings. More precisely,
for every subset X of the mixed crossings, there is a term where the crossings in
X are replaced by double points, and the crossings not in X are replaced by their
opposite so that they agree with their counterparts in K2K1. In particular, the
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Figure 18. Example commutator bracket computation.fig:combracket

term corresponding to X = ∅ is exactly K2K1. Thus λ(K1⊗K2) = K1K2−K2K1

can be written as a sum of terms with at least one double point, so it lives in T̃ 1.
Thus, λ(K1 ⊗K2) is in the kernel of the quotient map T̃ /2

∇ ( ) → T̃ /1
∇ ( ),

and the right square of Figure 17 commutes.
Now for the left square, suppose that K1⊗K2 is in the image of inclusion map

from T̃ 1/2
∇ ( )⊗ T̃ 1/2

∇ ( ) → T̃ /2
∇ ( )⊗ T̃ /2

∇ ( ). Then both K1 and K2 each have
exactly degree 1 (so one double points, or one framing change, or b), and their
product (in either order) has degree at least 2. Thus λi(K1 ⊗K2) ∈ T̃ 2

∇ and so
λ(K1 ⊗K2) = 0 in T̃ /2

∇ ( ) and the left square commutes.
By the snake lemma, λ induces a well defined connection homomorphism η :

T̃ /1( )⊗ T̃ /1( ) → T̃ 1/2
∇ ( ). From Proposition 5.2, we know that T̃ /1

∇ ( ) ∼=
|Cπ|. We need to argue that image of η lands in T̃ 1/2

∇ ( ).
After taking the quotient to T̃ 1

∇/T̃ 2
∇ , only the terms that have a single double

point remain, so [K1,K2] becomes a sum over the mixed crossings, where in
each term the mixed crossing is replaced by a double point. The map qb uses
the Conway relation to smooth each of these double point in by pulling out a
factor of b. Each smoothing merges the two circle components into one circle
component, so after applying qb, we land in T̃ /1( ) ⊆ T̃ /1, which is isomorphic
to |Cπ| through β. The result is a signed sum obtained by smoothing each mixed
crossing.

On the other hand, the mixed crossings in K1K2 correspond to intersections
between β(K1) and β(K2) in the overlap of their projected images. The Goldman
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A1/2
∇ ( )⊗A1/2

∇ ( ) A/2
∇ ( )⊗A/2

∇ ( ) A/1( )⊗A/1( ) 0

0 A1/2
∇ ( ) A/2

∇ ( ) A/1
∇ ( )

A/1( )

0 0

gr η

grλ

Figure 19. Commutative diagram that is the associated graded
of the diagram in Figure 17. The nontrivial horizontal maps are
the respective quotient maps.fig:Snakefor_gr_bracket

bracket [β(K1), β(K2)]G is a signed sum of the result of smoothing each mixed
intersection. Since the double points that come from mixed crossings correspond
with intersections between different components, to show the diagram commutes,
it only remains to check that the signs on each term agree.

If the tangent vectors of β(K1) and β(K2) make a positive basis at the in-
tersection point, the term in the Goldman bracket has a negative sign. Since
K1K2 stacks of K2 on top of K1, if β(K1) and β(K2) form a positive basis,
then the mixed crossing is negative in K1K2 and positive in K2K1, thus the
resulting double point also has a negative sign. Thus we can conclude that
η(K1 ⊗K2) = [K1,K2], completing the proof.

□

Recall that the graded Goldman bracket is a map [−,−]grG : |Asc |⊗ |Asc | →
|Asc | with formal given in Definition 3.8. By taking the associated graded of
the diagram in Figure 17 we arrive at the commutative diagram in Figure 19 and
recover the associated graded Goldman bracket.

cor:snakefor_gr_bracket Corollary 5.6. The diagram in Figure 19 commutes and gr η is the associated
graded Goldman bracket.

Proof. The maps in the diagram of Figure 17 are filtered maps, and therefore
Figure 19 is obtained by applying the associated graded functor to it. As a result,
the diagram of Figure 19 commutes, gr η is the induced map from the snake lemma
for this diagram, and coincides with the graded Goldman bracket. □

thm:bracketsnake Theorem 5.7. The Kontsevich integral descends to a homomorphic expansion
for the Goldman Bracket. That is, the following square commutes:

T̃ /1( ) T̃ /1( )⊗ T̃ /1( )

A/1( ) A/1( )⊗A/1( )

Z/1

η=[·,·]G
Z/1⊗Z/1

gr η
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T̃ /1( ) T̃ 1/2
∇ ( )⊗ T̃ 1/2

∇ ( ) T̃ /2
∇ ( )⊗ T̃ /2

∇ ( ) T̃ /1( )⊗ T̃ /1( )

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

A1/2
∇ ( )⊗A1/2

∇ ( ) A/2
∇ ( )⊗A/2

∇ ( ) A/1( )⊗A/1( )

A1/2
∇ ( ) A/2

∇ ( ) A/1( )

A/1( )

Z/1

0 Z1/2⊗Z1/2 λ Z/2⊗Z/2

Z/1⊗Z/1

0

η

Z1/2⊗Z1/2

0 grλ 0

gr η

Z/2⊗Z/2 Z/1⊗Z/1

Figure 20. Commutative cube showing the formality of the
Goldman bracket from the Kontsevich integral.

fig:Cube_for_bracket Proof. Taking the Kontsevich integral of the diagram in Figure 17 we get the
cube in Figure 20. We have already established that the top and bottom faces all
commute from Theorem 5.7 and Corollary 5.6. The front and back vertical faces
commute because Z respects the s-filtration and is homomorphic with respect to
the inclusions and quotient maps of the filtered component. The left and right

say this better!
vertical sides trivially commute because of the zero maps.

The Kontsevich integral is homomorphic with respect to diagram stacking, as
proved in Proposition 4.13. Since λ is the difference between two orderings of
diagram stacking, Z is homomorphic with respect to λ and the following square
commutes (which is the middle vertical face of Figure 20).

T̃ /2
∇ ( )⊗ T̃ /2

∇ ( )

T̃ /2
∇ ( )

A/2
∇ ( )⊗A/2

∇ ( )

A/2
∇ ( )

λ
Z/2⊗Z/2

Z/2⊗Z/2

grλ

The commutativity of all vertical faces of the cube diagram in Figure 20 implies
that the induced diagonal square also commutes.

Technically we get that
this square commutes.
But the square we want
has the inclusion maps
and a different descension
of Z. I wasn’t sure if we
need to make this
distinction, or maybe add
to this diagram? OR
only write the simpler
diagram as in the
statement of the theorem

T̃ 1/2( )⊗ T̃ 1/2( ) T̃ /1( )⊗ T̃ /1( )

A1/2( )⊗A1/2( ) A/1( )⊗A/1( )

Z1/2⊗Z1/2

η=[·,·]G
Z/1⊗Z/1

gr η

□
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Using Cπ̃ to mean
“sailing curves” i.e. those
that “never look north”,
but not introducing it
here because it seems like
it should be defined
already

5.2. The Tureav co-bracket. Recall from section ?? that the Turaev cobracket
on |Cπ| can be defined using the map µ : Cπ̃ → |Cπ| ⊗ Cπ. Our knot-theoretic
definition of the cobracket imitates this construction, and we interpret the domain
Cπ̃ and codomain |Cπ| ⊗ Cπ of µ in the context of tangles.

Let denote an interval skeleton component where both endpoints are on the
bottom Dp × {0}. We will call a tangle whose endpoints are all on the bottom
a bottom tangle. In diagrams, the endpoints of the tangle will be drawn in the
bottom right corner. As before, the beginning of each interval section will be
marked by a •, and the end will be marked by ∗, see figure ??.

drawing conventions are
random for nowWe can extend the projection map β from proposition 5.1 to bottom tangles

to get an isomorphism similar to corollary 5.3. We state the map β and corre-
sponding isomorphism in proposition 5.8, but omit the proof as it is the same as
before.

prop:ascispi Proposition 5.8. There is a well-defined natural bottom projection

β : T̃∇(
k ℓ

) → |Cπ|⊗k ⊗ Cπ⊗ℓ

that descends to an isomorphism β : T̃ /1( k ℓ
)

∼=−→ |Cπ|⊗k ⊗ Cπ⊗ℓ.

prop:qbonbottomtangles Proposition 5.9. The division by b map, qb, descends to an isomorphism

qb : T̃
1/2
∇ ( )

∼=−→ T̃ /1
∇ ( ).

Proof. The map qb uses the Conway relation to smooth double points to get a
two-component tangle, where one component has interval skeleton and the other
component has circle skeleton. □

This proof needs work.

def:asc+desc Definition 5.10. Let • and ∗ be two points on the boundary of Dp that are close
together. An embedding

T : (I, {0, 1}) ↪→ (Mp, {•, ∗})
representing a bottom tangle is called ascending if it “first goes up, and then
goes straight down”. More precisely, if (z, s) is a global coordinate system for
Mp = Dp × I, then T is an ascending tangle if there exists c ∈ (0, 1) such that
when t ∈ (0, c), the d

ds component of Ṫ is positive, and when t ∈ (c, 1), Ṫ is a
negative constant multiple of d

ds .
Likewise, such an embedding representing a bottom tangle T is descending if

it "first goes straight up, and then goes down". So there is c ∈ (0, 1) such that
when t ∈ (0, c), Ṫ is a positive constant multiple of d

ds and when t ∈ (c, 1) the d
ds

component of Ṫ is negative.

Definition 5.11. An ascending tangle is a bottom tangle in Mp whose ambient
isotopy class has an ascending embedding. See figure ?? for an example.

TODO: add figureGiven a curveK in Cπ, through the isomorphism β, K can be lifted to a bottom
tangle in T̃ /1( ). Because we are in the quotient by degree 1 terms, crossings can
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fig:ascending

placeholder figure of an ascending tangle with an ascending embedding and a
non-ascending embedding

be changed at will to make the lifted tangle be ascending or descending. However,
to lift K to a framed tangle takes some care. For any framed curve K in Cπ,
we can choose a homotopy class representative that with rotation number 0 that
is a sailing curve. A sailing curve is a curve whose tangent vector never points
north. When taking a lift of a sailing K, there is an ascending lift of the curve

make rigorous the notion
of north in the disk. Add
diagram of sailing trick
to avoid north

where the north vector is never tangent to the curve. We will denote this lift as
λa(K) We can choose a framing at each point p on λa(K) by taking the tangent
vector Ṫ at p and the projection of n⃗ on to the plane normal to Ṫ . Thus λa(K)
is a framed ascending bottom tangle. Similarly we will let λd(K) be a framed
descending bottom tangle. Finally, we define λ̄ : T̃ /1( ) → T̃ /2( ) by

λ̄(K) = λa(K)− λb(K)

to be the difference between the framed ascending bottom tangle and the framed
descending bottom tangle. In T̃ /2( ), crossing changes matter so λ̄ is not the
zero map.

Theorem 5.12. The diagram in Figure 21 commutes and the unique induced
map η is the self intersection map µ.

old proof, not yet
updated Proof. Let γ ∈ |Cπ| and let T = λa(γ) be an ascending lift. We can rewrite

each strand-strand crossings (s-crossing for short) of T as a sum or difference of
a double point and its counterpart in T fb . As in the proof of ??, rewriting each
s-crossing of T in this way yields a sum indexed by the subsets of its s-crossings.
For every subset X of s-crossings, there is a term in the sum where the s-crossings
in X are replaced by double points, and those not in X are replaced with their
counterparts in T fb . In particular, the term corresponding to X = ∅ is exactly
T fb , so T − T fb lives in T̃ 1( ).

By passing to the quotient T̃ 1
∇/T̃ 2

∇ ( ), only the terms that have a single double
point remain, so T − T fb becomes a sum over the s-crossings of T , where in each
term the s-crossing is replaced by a double point. The map qb uses the Conway
relation to smooth these double points to get a two-component tangle, where one
component has interval skeleton and the other component has circle skeleton.
Thus we land in T̃ /1

∇ ( ), which is isomorphic to |Cπ| ⊗ Cπ via β. □

For a bottom tangle, there is a closure map from cl : T̃ ( ) → T̃ ( ) by
connecting the endpoints of the bottom tangle, • and ∗, by a canonical path in the
boundary of the disk. Recall from Section 3.3 that the cobracket δ is constructed
from µ by post composing with the closure map and then antisymetrizing. In
the context of tangle diagrams, this construction is shown in Figure 22. The
closure map cl : T̃ /1( ) → T̃ /1( ) ⊗ T̃ /1( ) orders the components by placing
the closed bottom tangle in the second slot. The intermediate induced map after
closing, but before antisymmtrizing, is denoted in the figure by δ̂ and is called the
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T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( ) 0

0 T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ /1( )

0

q

0
λ̄

µqb

λ=λ̄◦q

∼=

Figure 21. The nontrivial horizontal maps are the respective
quotient maps.fig:Snakeformu

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ /1( )

T̃ /1( )⊗ T̃ /1( )

T̃ /1( )⊗ T̃ /1( )

0 0

µ

δ̂

δ

qb

λ

cl

∼=

Alt

Figure 22. Constructing δ from µ.fig:Snakeforcobracket

ordered Turaev cobracket. We will show the Kontsevich integral is homomorphic
with respect to δ̂. The homomorphicity of δ with respect to Z follows from
immediately the homomorphicity of δ̂ with respect to Z because gr(Alt) = Alt.

Taking the associated graded of the diagram in Figure 17 we arrive at the
diagram in Figure 23

thm:snakefor_gr_cobracket Theorem 5.13. The diagram in Figure 23 commutes and the induced map gr δ̂
is the associated graded ordered Turaev cobracket.

Proof. The maps in the diagram of Figure 22 are filtered maps, and therefore
Figure 23 is obtained by applying the associated graded functor to it. As a
result, the diagram of Figure 23 commutes, grµ is the induced map from the
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Ã1/2
∇ ( ) Ã/2

∇ ( ) Ã/1( ) 0

0 Ã1/2
∇ ( ) Ã/2

∇ ( ) Ã/1( )

Ã/1( )

Ã/1( )⊗ Ã/1( )

0 0

grµ

gr δ̂

qb

grλ

gr cl

∼=

Figure 23. Associated graded diagram constructing the graded
ordered Turaev cobracket.fig:Snakefor_gr_cobracket

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ /1( )

T̃ /1( )⊗ T̃ /1( ) T̃ /2
∇ ( ) T̃ /1( ) 0

0 0

µ

δ̂

qb

λ

cl

0

cl

∼=

∃ρ

Figure 24. Commutative diagram for Lemma 5.14.fig:topcubesimplification

snake lemma for this diagram, and so gr δ̂ coincides with the graded ordered
Turaev cobracket. □

lem:topcubesimplification Lemma 5.14. There exists a map ρ : T̃ /1( ) ⊗ T̃ /1( ) → T̃ /2
∇ ( ) that makes

the diagram in Figure 24 commute.
In this figure, do we need
µ in it still?

Proof. There is an isomorphism from T̃ /1( )⊗T̃ /1( ) to T̃ /1( ) by combining
the two tangles into a single tangle and forgetting the order of the components.
Since we are modding out by s degree 1, there is no notion of over or under, these
are just curves in the disc.
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The map ρ : T̃ /1( ) ⊗ T̃ /1( ) → T̃ /2( ) is defined to be the following com-
position of maps.

T̃ /1( )⊗ T̃ /1( ) T̃ /1( ) T̃ 1/2
∇ ( ) T̃ /2

∇ ( )
forget

ρ

qb

Since the image of ρ in T̃ /2
∇ is all of T̃ 1/2 we get the following short exact sequence.

T̃ /1( )⊗ T̃ /1( ) T̃ /2
∇ ( ) T̃ /1( ) 0

ρ

The commutativity of the diagram in Figure 24 relies finally on the commuta-
tivity of the bottom left square. We single this square out below and verify the
commutativity.

T̃ 1/2
∇ ( ) T̃ /2

∇ ( )

T̃ /1( )

T̃ /1( )⊗ T̃ /1( ) T̃ /1( ) T̃ 1/2
∇ ( ) T̃ /2

∇ ( )

qb

cl

∼=

cl

ρ

qb
∼=

Let T ∈ T̃ 1/2
∇ ( ), then T is a bottom tangle with exactly one double point.

Following along the top and right of the diagram in Figure 24, when T is closed,
we get a closed loop with one double point inside T̃ /2

∇ ( ). Following along the
right and bottom, qb(T ) uses the Conway relation to snip off a loop of T to get
a tangle in T̃ /1( ) with one closed loop and a bottom tangle, with no double
points. Closing the bottom tangle and forgetting the order of the closed loops
gives a tangle in T̃ /1( ) with two closed loops and no double points. Reversing
the Conway relation along qb glues together the two closed loops to get a single
closed loop with one double point then included into T̃ /2( ). This arrives at the
same closed loop with one double point as if we had closed T in the first place.

□

lem:frontlefthomom Lemma 5.15. The diagram in Figure 25 commutes.

Proof. The right square commutes because Z is a filtered map and respects filtered
inclusions.
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T̃ /1( )⊗ T̃ /1( ) T̃ /1( ) T̃ 1/2
∇ ( ) T̃ /2

∇ ( )

Ã/1( )⊗ Ã/1( ) Ã/1( ) Ã1/2
∇ ( ) Ã/2

∇ ( )

forget

ρ

Z/1⊗Z/1

qb

Z/1 Z/1 Z/2

forget

gr ρ

gr qb

Figure 25. Commutative diagram for Lemma 5.15fig:frontlefthomom

For the middle square, we use the map qb from right to left and show commu-
tativity on a double point.

Z/1(qb( )) = Z/1( ) =

Z/1( ) = eC/2 − e−C/2

=
C

2
− (−C

2
) + higher degree terms ∈ Ã/2

∇ ( )

= C = = a = a

gr qb(Z
/1( )) = gr(a ) =

Make new diagrams for
power chord and power
swap to have 1 chord and
1 and 2 swaps

For the left square, Z compatible with forgetful is because we land in /1, where
there are no s-s chords. □

say more about left
squarethm:cobrackethomomorphic Theorem 5.16. The Kontsevich integral descends to a homomorphic expansion

for the ordered Turaev cobracket. That is, the following square commutes:

T̃ /1( )⊗ T̃ /1( ) T̃ /1( )

A/1( )⊗A/1( ) A/1( )

Z/1⊗Z/1

δ̂

Z/1

gr δ̂

Proof. The diagram in Figure 26 is attained by taking the Kontsevich integral
of the commutative diagram in Figure 24 (with the middle layers omitted). We
have already established that the top and bottom faces commute by Lemma 5.14
and Theorem 5.13. The left and right vertical sides trivially commute because
of the zero maps. The front-left vertical square commutes by Lemma 5.15. The
front-right and back faces commute because Z respects the s-filtration and is
homomorphic with respect to the inclusion and quotient maps of the filtered
components.

The middle vertical face of Figure 26 is the following square.
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T̃ 1/2
∇ ( ) T̃ /2

∇ ( ) T̃ /1( )

T̃ /1( )⊗ T̃ /1( ) T̃ /2
∇ ( ) T̃ /1( )

Ã1/2
∇ ( ) Ã/2

∇ ( ) Ã/1( )

Ã/1( )⊗ Ã/1( ) Ã/2
∇ ( ) Ã/1( )

0 Z1/2 cl◦λ Z/2

Z/1

0

δ̂

ρ

Z1/2⊗Z1/2

0 gr(cl◦λ) 0

gr δ̂

gr ρ

Z/2 Z/1

Figure 26. Commutative cube showing the formality of the or-
dered Turaev cobracket from the Kontsevich integral.fig:Cube_for_cobracket

T̃ /2
∇ ( )

T̃ /2
∇ ( )

A/2
∇ ( )

A/2
∇ ( )

cl◦λ
Z/2

Z/2

gr(cl◦λ)

The Kontsevich integral is homomorphic with respect to the flip operation, as
shown in Proposition 4.13. The map cl ◦ λ applied to a bottom tangle outputs

This is not quite right,
FIX ME!the difference between the closed ascending lift and the closed descending lift.

The closed descending lift is the flip of the closed ascending lift. So cl ◦ λ =
(id − flip) ◦ cl acting on ascending representatives. Z is homomorphic with
respect to (id− flip) ◦ cl.

where does conjugation
come into play??
Something about flipping
first then dragging the
ends down and then
closing.

The commutativity of all vertical faces of the cube diagram in Figure 26 implies
that the induces diagonal square also commutes, which gives the desired formality
of the theorem statement. □

remark–if we were doing this with µ is it wouldn’t work because flip of a bottom
tangle is not a bottom tangle. It is much cleaner to just pass to the closures.
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