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ABSTRACT
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1. Warm-up: the baby invariant, ZG

Let T be an oriented tangle diagram. Let G be a monoida, and suppose we are

given two pairs R± = (g±o , g
±
u ) of elements of G. At each positive (resp. negative)b

crossing of T , assign g+o (resp. g−o ) to the upper strand and g+u (resp. g−u ) to the

lower strand, as in Figure 1. Then, for every strand, multiply all elements assigned

to it in the order that they appear and store the end result. If T has n strands, we

get a collection of n elements of G. Call this collection ZG(T ).

aA monoid is like a group, but without inverses: it is a set with an associative binary operation
and a unit. Every group is also a monoid.
bSigns are determined by the “right-hand rule”: If the right-hand thumb points along the direction
of the upper strand of a positive crossing, then the fingers curl in the direction of the lower strand.
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Fig. 1. Computing ZG of a tangle: (a) assigning values to crossings. (b) collecting along strands

Unfortunately, the gods are not so kind and ZG is not worth much more than

the effort that went in it. Indeed, invariance under the Reidemeister II move (see

Figure 2) demands g−o = (g+o )
−1

and g−u = (g+u )
−1

, while Reidemeister III adds

that g+o and g+u , as well as g−o and g−u , commute. As a result, every component of

ZG(T ) collapses to the form gaog
b
u for some integers a and b, so all the information to

bring home is the signed number of times a given strand crosses over or under other

strands. It will turn out, nevertheless, that a generalized version of this procedure

yields an amply non-trivial invariant with novel properties.

= =
=

Fig. 2. The three Reidemeister moves: I, II, III

2. A better invariant: Zβ

The invariant that we wish to introduce can be thought of as taking values in a

meta-monoid. This is a generalization of what we call a “monoid computer”:

2.1. Preliminary: A Monoid Computer

If X is a finite set and G is a monoid we let GX denote the set of all possible

assignments of elements of G to the set X; these are “G-valued datasets, with

registers labelled by the elements of X”.
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x:g1

y:g2

u:g3

v:g4

Fig. 3. A typical element of G{x,y,u,v}

A monoid computer can manipulate registers in some prescribed ways. For ex-

ample, if X does not contain x, y and z, define mxy
z : GX∪{x,y} → GX∪{z} using the

monoid multiplication, {x : g1, y : g2} 7→ {z : g1g2}. There are obvious operations for

renaming or deleting a register, and inserting the identity in a new register, respec-

tively denoted ρxy , dx and ey, and respectively implemented on GX∪{x} by fixing

the content of X and mapping {x : g} to {y : g}, {} and {x : g, y : e}. In addition

there is a binary operation for merging data sets,
⋃

: GX × GY → GX∪Y , which

takes two data sets P and Q and forms their disjoint union P ∪Q. We can compose

the aforementioned maps if labels match correctly, and we do so from left to right

with the aid of the notation �. For example, we write P � ρxy � ρyz to rename the

register x of P first to y, then to z.

2.2. Meta-Monoids

The operations on a monoid computer obey a certain set of basic set-theoretic ax-

ioms as well as axioms inherited from the monoid G. A meta-monoid is an abstract

computer that satisfies some but not all of those axioms. We postpone the precise

definition to Section 3. It may be best to begin with examples and a prototypical

one is as follows. Let GX := MX×X(Z) denote (not in reference to any monoid G)

the set of |X| × |X| matrices of integers with rows and columns labelled by X. The

operation of “multiplication”, on say, 3 × 3 matrices, mxy
z : G{x,y,w} → G{z,w}, is

defined by simultaneously adding rows and columns labelled by x and y:




x y w

x a b c

y d e f

w g h i


 7→

( z w

z a+ b+ d+ e c+ f

w g + h i

)

While still satisfying the associativity condition mxy
u �muv

w = myv
u �mxu

w , this

example differs from a monoid computer by the failure of a critical axiom: if P ∈
G{x,y},

dyP ∪ dxP 6= P
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Indeed, if P ∈ G{x,y} is the matrix

(x y

x a b

y c d

)
, then

dyP ∪ dxP =

(x y

x a 0

y 0 d

)
6= P

2.3. Meta-Bicrossed Products

Suppose a group G is given as the product G = TH of two of its subgroups,

where T ∩ H = {e}. Then also G = HT c and every element of G has uniqued

representations of the form th and h′t′ where h, h′ ∈ H and t, t′ ∈ T . Accordingly

there is a “swap” map sw : T ×H → H×T , (t, h) 7→ (h′, t′) such that if g = th then

g = h′t′ also. The swap map satisfies some relations; in monoid-computer language,

the important ones are as in Figure 4. Conversely, provided that the swap map

satisfies the relations in Figure 4, the data (H,T, sw) determines a monoid G, with

product given by {(h1, t1), (h2, t2)} 7→ (h1h
′
2, t
′
1t2) where sw(t1, h2) = (h′2, t

′
1). G

is called the bicrossed product of H and T , which we could denote (H × T )sw.

In a semidirect product, one of H or T is normal (say T ) and the swap map is

sw : (t, h) 7→ (h, h−1th).

=

t1 t2 h4 t1 t2 h4

=

t1 h4 t1 h4h3 h3

Fig. 4. swap operation axioms. tm and hm stand for multiplication in T and H respectively: (a)
tm12

1 � sw14 = sw24 � sw14 � tm12
1 . (b) hm34

3 � sw13 = sw13 � sw14 � hm34
3

The corresponding notion of a meta-bicrossed product is a collection of sets

β(η, τ) indexed by all pairs of finite sets η and τ (η for “heads”, τ for “tails”), and

equipped with multiplication maps tmxy
z (x, y and z tail labels), hmxy

z (x, y and z

head labels), and a swap map swthxy (where t and h indicate that x is a tail label

and y is a head label — note that swhtyx is in general a different map) satisfying (a)

and (b).

cIndeed, if g−1 = th, then g = h−1t−1, so g−1 ∈ TH implies g ∈ HT , and as TH = G, also
HT = G.
dSeparation of variables: suppose g = h1t1 = h2t2. Then we have h−1

2 h1 = t2t
−1
1 , which implies

that h1 = h2 and t1 = t2 since h−1
2 h1 ∈ H, t2t

−1
1 ∈ T , and H ∩ T = {e}.
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


h1

t1 a+ b

t2 c+ d

t3 e+ f







h1 h2

t1 a b

t2 c d

t3 e f




hm1,2
1

88

tm1,2
1 //

swth
1,2 &&

( h1 h2

t1 a+ c b+ d

t3 e f

)




h1 h2

t1 a b

t2 c d

t3 e f




Given the above we can make

a “monoid multiplication” map

out of the head and tail mul-

tiplication maps via gmxy
z :=

swthxy � tmxy
z � hmxy

z . Thus a

meta-bicrossed product defines

a meta-monoid with ΓX =

β(X,X). An example of a meta-

bicrossed product is given by the

rectangular matrices, µ(η, τ) :=

Mτ×η(Z), with tmxy
z and hmxy

z

corresponding to adding two

rows and adding two columns,

and swap being the trivial oper-

ation. Here ΓX is the same as the

first example of Section 2.2. An example with a non-trivial swap map will shortly

follow.

2.4. β Calculus

The β calculus has an arcane origin [BND]e which we will not discuss. We expect

that it can be presented in a much simpler and fitting context than that in which it

was discovered. Accordingly we will simply pull it out of a hat. Though note that

many of our formulas bear close resemblance to formulas in [LD,KLW,CT].

Let β(η, τ) be (again, in reference to sets η and τ) the collection of arrays with

rows labeled by ti ∈ τ and columns labeled by hj ∈ η, along with a distinguished

element ω. Such arrays are conveniently presented in the following format:

ω h1 h2 . . .

t1 α11 α12 ·
t2 α21 α22 ·
... · · ·

The αij and ω are rational functions of variables Ti, which are in bijection with

the row labels ti.

β(η, τ) is equipped with a peculiar set of operations. Despite being repulsive at

sight, they are completely elementary. They are defined as follows:

ein which, among other things, the “heads and tails” vocabulary is motivated.
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tmxy
z :

ω . . .

tx α

ty β
... γ

7→
ω . . .

tz α+ β
... γ

Here α and β are rows and γ is

a matrix. The sum α+ β is ac-

companied by the correspond-

ing change of variables Tx, Ty
7→ Tz.

hmxy
z :

ω hx hy . . .
... α β γ

7→
ω hz . . .
... α+ β + 〈α〉β γ

Here α and β are columns,

γ is a matrix, and 〈α〉 =∑
i αi.

swthxy :

ω hy . . .

tx α β
... γ δ

7→
ωε hy . . .

tx α(1 + 〈γ〉/ε) β(1 + 〈γ〉/ε)
... γ/ε δ − γβ/ε

Here α is a single entry, β is

a row, γ is a column, and δ

is a matrix comprised of the

rest. ε = 1 + α. Note also

that γβ is the matrix prod-

uct of the column γ with

the row β and hence has the

same dimensions as the ma-

trix δ.

We also need the disjoint union, defined by

ω1 H1

T1 α1
∪ ω1 H1

T1 α1
=

ω1ω2 H1 H2

T1 α1 0

T2 0 α2

We make β into a meta-monoid via the “monoid-multiplication” map gmxy
z :=

swthxy � tmxy
z � hmxy

z . We will later set out to make proper definitions, write down

the remaining operations, and establish the following

Theorem 2.1. β is a meta-bicrossed product.

Finally there are two elements which will serve as a pair of “R-matrices”, anal-

ogous to the pair of pairs (g±o , g
±
u ) of ZG:

R+
xy =

1 hx hy
tx 0 Tx − 1

ty 0 0

R−xy =

1 hx hy
tx 0 T−1x − 1

ty 0 0

2.5. Zβ

Let T be again an oriented tangle diagram. At each crossing, assign a number to

the upper strand and to the lower strand. Using the R±xy of above, form the disjoint

union
⋃
{i,j}R

±
ij where {i, j} runs over all pairs assigned to crossings, with i labelling
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the upper strand and j labelling the lower strand, and where ± is determined by

the sign of the given crossing. Now for each strand multiply all the labels in the

order in which they appear. That is, if the first label on the strand is k, repeatedly

apply gmkl
k where l runs over all labels subsequently encountered on the strand (in

order). If T has n strands, the result is an n×n array with an extra corner element.

Call this array Zβ(T ). Those were a lot of words, so take for example the knot 817
illustrated in Figure 5. In this case, form the disjoint unionf

R−12,1R
−
2,7R

−
8,3R

−
4,11R

+
16,5R

+
6,13R

+
14,3R

+
10,15,

which is given by the following arrayg:

1 h1 h3 h5 h7 h9 h11 h13 h15
t2 0 0 0 T−12 − 1 0 0 0 0

t4 0 0 0 0 0 T−14 − 1 0 0

t6 0 0 0 0 0 0 T6 − 1 0

t8 0 T−18 − 1 0 0 0 0 0 0

t10 0 0 0 0 0 0 0 T10 − 1

t12 T
−1
12 − 1 0 0 0 0 0 0 0

t14 0 0 0 0 T14 − 1 0 0 0

t16 0 0 T16 − 1 0 0 0 0 0

Then apply the multiplications gm1k
1 , with k running from 2 to 16, to get the

following 1× 1 array with corner element:

−T−31 + 4T−21 − 8T−11 + 11− 8T1 + 4T 2
1 − T 3

1 h1
t1 0

Theorem 2.2. Zβ is an invariant of oriented tangle diagrams.

Proof. Straightforward check. We do the computation for the Reidemeister III

move to illustrate. The disjoint unions for each side of the equality are given by:

fFrom now on we omit the ∪ in disjoint unions: β1β2 := β1 ∪ β2.
gWe suppress rows/columns of zeros.
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1

2

3
4

5

6

1
2

3

4

5

6

R−1,5R
−
6,2R

+
3,4 =

1 h1 h2 h4
t3 0 0 T3 − 1

t5 T
−1
5 − 1 0 0

t6 0 T−16 − 1 0

R+
6,1R

−
2,4R

−
3,5 =

1 h1 h4 h5
t3 0 T−12 − 1 0

t5 0 0 T−13 − 1

t6 T6 − 1 0 0

Then one checks that indeed

R−1,5R
−
6,2R

+
3,4 � gm1,4

1 � gm2,5
2 � gm3,6

3 = R+
6,1R

−
2,4R

−
3,5 � gm1,4

1 � gm2,5
2 � gm3,6

3

=

1 h1 h2
t1 T−12 − 1 0

t2 T
−1
2 (T3 − 1) T−13 − 1

One philosophically appealing major property of Zβ is that the operations used

to compute it have a literal interpretation of gluing crossings together. In particular,

at every stage of the computation we get an invariant of the tangleh made of all the

crossings but only those for which the corresponding gm was carried out have been

glued. Additionally, unlike other existing extensions of the Alexander polynomial to

tangles, Zβ takes values in spaces of polynomial size, at every step of the calculation.

2.6. Knots and links

Conjecture 2.1. Restricted to long knots (which are the same as round

knots), the corner element of Zβ is the Alexander polynomial. Restricted

to string links (which map surjectively to links), Zβ contains the multi-

variable Alexander polynomial.

While we are shy of a formal proof, the computer evidence behind Conjecture 2.1

is overwhelming. See Section 4.3.

hThe careful reader may wish to peek ahead at Section 3.1 for a better grasp of this statement.
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3. More on meta-monoids

3.1. The meta-monoid of coloured v-tangles

When one tries to follow the interpretation of the computation of Zβ as progres-

sively attaching crossings together to form a tangle, one will in general encounter a

step where the tangle becomes non-planar (a strand will have to go through another

in an “artificial” crossing to reach the boundary disk). See Figure 5. Such tangles

are called virtual or v-tangles and constitute a rich subject of study on their own;

see [Kau]. We will be content with acknowledging their existence and giving them

a name.

1 12

13 10

32

7

9

14

8
4

11

15

5

6
16

Fig. 5. The knot 817: (a) With crossings labelled. (b) After attaching crossings 1 through 10.
The arcs with green dots can not make it out to the boundary disk.

If X is a finite set, oriented X-coloured purei virtual tangles form a meta-

monoid. The operation mxy
z attaches the head of strand x to the tail of strand y

(possibly through a few virtual crossings) and names the resulting strand zj.

3.2. Some familiar invariants

We have already suggested that ZG and Zβ take values in meta-monoids. Some

more traditional invariants can also be cast in meta-monoid context. Note that ZG

is in fact very traditional, being nothing more than linking numbers. We invite

the reader familiar with the fundamental group of the complement of a tangle to

consider the following set-up:

iPure means that the tangles have no closed component.
jRemark: this is not a meta-generalization of the group structure on braids.
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Let G{x1,...,xn} = {(Γ,m1, l1, . . . ,mn, ln); Γ is a group;mi, li ∈ Γ}. The multi-

plication map that corresponds to what happens to the meridians and longitudes

when one plugs a strand into another is

mij
i (Γ,m1, l1, . . . ,mn, ln) = (Γ/(mj = l−1i mili),m1, l1l2, . . . , m̂j , l̂j , . . . ,mn, ln)

Also the fundamental group of the complement of two disjoint tangles is the

free product of the respective fundamental groups, so we define also

(Γ1,m1
1, l

1
1, . . . ,m

1
n, l

1
n) ∪ (Γ2,m2

1, l
2
1, . . . ,m

2
k, l

2
k)

= (Γ1 ? Γ2,m1
1, l

1
1, . . . ,m

1
n, l

1
n,m

2
1, l

2
1, . . . ,m

2
k, l

2
k).

3.3. Definitions

We now proceed to laying down the details of the definitions of meta-monoids and

meta-bicrossed products.

A meta-monoid is a collection of sets Γ indexed by all finite sets, equipped with

operations mxy
z : Γ{x,y}∪X → Γ{z}∪X , ex : ΓX → Γ{x}∪X , dx : Γ{x}∪X → ΓX , and⋃

: ΓX × ΓY → ΓX∪Y satisfying the following:

“Monoid theory” axioms

• ex �mxy
z = ρyz (left identity)

• ey�mxy
z = ρxz (right identity)

• mxy
u �muz

v = myz
u �mxu

v (as-

sociativity)

“Set manipulation” axioms

• ρyx � ρxy = id

• ρxy � ρyz = ρxz
• ρxy � dy = dx
• mxy

z � dz = dx � dy
• ex � dx = id

• mxy
z � ρzu = mxy

u

• ρxu �muy
z = mxy

z

• ex � ρxy = ey
• Operations involving disjoint sets

of labels commute (e.g. ex � ey =

ey � ex)

A meta-bicrossed product is a collection of sets Γ indexed by all pairs of finite

sets, equipped with maps hm, tm, and sw, such that:

• hmxy
z : Γ(η ∪ {x, y}, τ0) → Γ(η ∪ {z}, τ0) and tmxy

z : Γ(η0, τ ∪ {x, y}) →
Γ(η0, τ ∪ {z}) define a meta-monoid structure for each fixed choice of τ0
and η0, respectively.

• swxy satisfies the following relations (recall Figure 4)

– tmxy
x � swxz = swxz � swyz � tmxy

x

– hmyz
y � swxy = swxy � swxz � hmyz

y

– swxy � tρxu = tρxu � swuy
– swxy � hρyu = hρyu � swxu
– tex � swxy = tex
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– hey � swxy = hey

Note that in a meta-bicrossed product, mxy
z = swxy � hm

hxhy

hz
� tm

txty
tz always

defines a meta-monoid with ΓX = Γ(X,X)

4. Some verifications: computer program

Using Mathematica, it is possible to write a very concise implementation of β-

calculus, and use to carry out the algebraic manipulations that prove Theorem 1

and verify Conjecture 1 on a convincing number of knots and links. We do that in

several parts below, with all code included.

4.1. The Program

We start by loading the Mathematica package KnotTheory‘. This is not strictly

necessary, and it is only used for comparison with standard evaluations of the

Alexander polynomial:

We then move on to our main program.

The first part of the program is mostly cosmetic. Its main part is the routine

βForm used for pretty-printing β-calculus outputs.

In the main part of the program, a β matrix is represented as a polynomial in

two variables: µ =
∑
αijtihj . This makes some calculations very simple! Selecting

the content of column i is achieved by taking a derivative with respect to hi; setting

all the t’s equal to 1 computes its column sum. The disjoint union of two matrices

is simply the sum of their polynomials.
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4.2. Proof of Theorem 1

To establish Theorem 1 we just need to check that the operations of β-calculus sat-

isfy the axioms of a meta-bicrossed product listed in Section 3.3. We only bother

with the non-obvious axioms, the associativity of tm and of hm, and the two swap

axioms of Figure 4. Even this we do the lazy way — we have a computer imple-

mentation of the β-calculus operations. Why not use it to check the relations?

As a first check, we check the meta-associativity of tm — we input a generic

4-tail and 2-head β matrix, let O1 and O2 be the outputs of evaluating tm12
1 � tm13

1

and tm23
2 � tm12

1 on β, and finally we print the logical value of O1 = O2. Nicely, it

comes out to be True.



September 13, 2013 6:35 WSPC/INSTRUCTION FILE MetaMonoids-
JKTR

Meta-Monoids 13

We then do the same for hm, except we now use a β matrix with 2 tails and

4 heads, and we suppress the printing of O2. Nicely, the logical value of O1 = O2

is again True. (So we didn’t lose much by not printing O2). Note that to keep our

output from overflowing the width of the page, we have to denote αi by î.

Next come the two swap axioms.
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Note that for the second swap axiom, some algebraic simplification must take

place, using the routine βCollect.

Just for completeness, we verify the third Reidemeister move once again.

4.3. Testing Conjecture 2.1

Our next task is to carry out some computations for knots and links in support of

Conjecture 2.1. As our first demonstration, we compute Zβ(817) in several steps.

The first step is to generate the invariant of the tangle consisting of the disjoint

union of 8 crossings, labeled as the crossings of 817 are labeled but not yet connected

to each other:
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Next, we partially concatenate the strands of these 8 crossings to each other,

making only 9 of the required 15 connections. The result is 3-component tangle that

approximates 817, and a chance to see what an intermediate step of the computation

looks like:

We then complete the sewing together of 817, obtaining Zβ(817). Note that the

“matrix part” of the invariant is completely suppressed by our printing routine,

because it is 0.

For completeness, we compare with the pre-computed value of the Alexander

polynomial, as known to KnotTheory‘. As can be fairly expected, it differs from

the computed value of Zβ(817) by a unit.

We next make it systematic by writing a short program that compute Zβ of an
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arbitrary input link.

We verify that for all knots with up to 8 crossings, the ratio of Zβ and the

Alexander polynomial is always a unit. At home we’ve verified the same thing for

all knots with up to 11 crossings.

Next is the program for extracting the multi-variable Alexander polynomial

from the information in Zβ .

It works for the Borromean rings!

And also for all links with up to 7 crossings. At home we’ve verified the same
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for all links with up to 11 crossings.
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