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Knot Theory as an Excuse Discovery Grant Proposal

Recent Progress.
For the purpose of this proposal, I would like to con-

centrate on topic #4 in my Notice of Intent. Recently, as a
direct outcome of the research supported by my previous
NSERC grant, Roland van der Veen and I commenced a
study of a knot invariant Θ, which is the strongest gen-
uinely computable knot invariant presently known.
Let me start by discussing the words in this bold state-
ment.

A knot is a piece of
string tangled up in 3D
space; some examples ap-
pear on the right. We con-
sider two such tanglings
to be equivalent if you can
get from one to the other
by continuously deforming the strings from one shape to
the other, without cutting them at any point. Knots may
appear esoteric, yet they are key to the understanding of
all 3-dimensional and 4-dimensional spaces. For a light
introduction, see [Mu].

It is in general very difficult to decide if two knots are
equivalent; the best algorithms to do so take an exponen-
tial amount of time and hence they are impractical. So
we seek what’s called “knot invariants” – computable
functions that assign to a knot some simpler quantities,
such as polynomials or matrices, in a way so that equiva-
lent knots are assigned equal invariants. It is even better
if one can read topological properties of the knot from
the values of its invariants.

By genuinely computable we mean that we can
compute Θ on arbitrary knots with up to about 300 cross-
ings. For almost any other invariant presently known,
that would be science fiction.

By strongest we mean that Θ appears to be quite
good at separating knots. For example, on the 313,230
prime knots with up to 15 crossings, Θ attains 306,472
distinct values – a deficit of 6,758. The better known
yet less computable HOMFLY-PT polynomial and Kho-
vanov homology, taken together, have a deficit of 70,245,
more than 10 times the worse.

Aside. The main part of the value of Θ is a two-
variable polynomial. Such polynomials can be regraded
as 2D arrays of coefficients, and these can be considered
as coding the colour values of pixels. Hence the values of
Θ can be displayed as pictures. The picture correspond-
ing to a random 317 crossing knot (from [DHOEBL])
appears below. There are patterns in these pictures, and

one of my less-major goals within the grant period will
be to understand them.

While perhaps not strictly necessary, I’d like to give
here a complete definition of Θ.
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Preparation. Given an oriented knot
K, we draw it in the plane as a long knot
diagram D with n crossings in such a
way that the two strands intersecting at
each crossing are pointing up (that’s al-
ways possible because we can always ro-
tate crossings as needed), and so that at
its beginning and at its end the knot is
oriented upward. We label each edge of
the diagram with two integer labels: a
running index k which runs from 1 to
2n + 1, and a “rotation number” φk, the geometric ro-
tation number of that edge (the signed number of times
the tangent to the edge is horizontal and heading right,
with cups counted with +1 signs and caps with −1; this
number is well defined because at their ends, all edges
are headed up). On the right the running index runs from
1 to 7, and the rotation numbers for all edges are 0 except
for φ4, which is −1.

Making a matrix. We let A be the (2n + 1) × (2n + 1)
matrix with entries in the ring Z[T±1] of Laurent polyno-
mials in a formal variable T obtained by starting with the
identity matrix I2n+1 and adding to it one contribution per
crossing as follows (s is the sign of the crossing):
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j+1 i+1 j+1i+1

i ij
s = +1 s = −1

j
−→

add at column i+1 column j+1
row i −T s T s − 1
row j 0 −1

(1)

For our example, A comes out to be:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


Please count everything so far as “trivial”. The ma-

trix A is a presentation matrix for the Alexander mod-
ule of K, obtained by using Fox calculus on the lower
Wirtinger presentation. Up to a unit ±T •, its determinant
is the normalized Alexander polynomial ∆ and there’s
nothing new about it. In fact,

∆ = T (−φ−w)/2 det(A), with φ =
∑

k

φk, w =
∑

c

s.

Note that in our example ∆ = T − 1 + T−1.
Doing something new. Let G = (gαβ) = A−1 be the

inverse matrix of A, so in our example, G is

1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 −
(T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1


.

There is little precedence for inverting a presentation
matrix, so already here we are in little-explored territory.

Let T1 and T2 be indeterminates and let T3 = T1T2.
For ν = 1, 2, 3 let ∆ν and Gν = (gναβ) be ∆ and G subject
to the substitution T → Tν. Now define

θ(K) B ∆1∆2∆3

∑
c

R11(c) +
∑
c0,c1

R12(c0, c1)

+
∑

k

Γ1(φk, k)

 , (2)

where the first summation is over crossings c = (s, i, j)
(with s, i, j as in (1)), the second is over pairs of cross-
ings (c0 = (s0, i0, j0), c1 = (s1, i1, j1)), and the third is
over edges k, and where

R11[s_, i_, j_] =

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj -

T2
s
- 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3

s
 g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji

1 - T2
s g1ii - T1

s
- 1 T2

s
+ 1 g1ji +

T2
s
- 2 g2jj + g2ij T2

s
- 1;

R12[{s0_, i0_, j0_}, {s1_, i1_, j1_}] =

s1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0;

and
Γ1[φ_, k_] = -φ/ 2 + φ g3kk;

(The formulas above were computer-generated from the
source code of a program that computes Θ and that was
verified throughly. This guarantees the absence of typos.)

Now let Θ(K) = (∆(K), θ(K)) (the computation of ∆
is a part of the computation of θ, so including it here is not
artificial). This completes the definition of Θ(K). Yet, to
emphasize that the definition above is actually quite sim-
ple, here is a complete implementation of Θ, written in
Matematica [Wo]:
T3 = T1 T2;

Θ[K_] :=

Module{Cs, φ, n, A, s, i, j, k, Δ, G, ν, α,

β, gEval, c, z},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

gEval[ℰ_] :=

Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

z = gEval
k=1

n
R11 @@ Cs〚k〛;

z += gEval
k1=1

n


k2=1

n
R12[Cs〚k1〛, Cs〚k2〛];

z += gEval
k=1

2 n
Γ1[φ〚k〛, k];

{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) z} //

Factor ;
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Note 1. We note the similarity between the formulas
written here forΘwith evaluations of perturbed Gaussian
integrals via Feynman diagrams. In both cases the end re-
sult is a sum of polynomials in the entries of the inverse
of a matrix. This similarity can be made precise, and
indeed, in [BN5] I write a perturbed Gaussian integral
formula for Θ, in which the Lagrangian is a sum over the
crossings of K of quadratic terms that correspond to the
matrix A (and whose inverse becomes G) and of higher
order perturbation terms. The integration is carried out
over a space whose dimension is 6 times the number of
edges in a diagram D of K — a space that has some com-
binatorial significance (as it pertains to a knot diagram)
but no immediate topological significance.

Objectives.
I have two long-term career goals. They are radical

and it is time to out them.
Goal 1. It’s time to depreciate Witten-Reshetikhin-
Turaev invariants (WRT) within knot theory and low di-
mensional topology. This may sound like the words of a
lunatic, seeing that so so much has been written about the
Chern-Simons-Witten quantum field theory and about
Reshetikhin-Turaev invariants (including by myself). Yet
please, bear with me and keep an open mind:

• WRT invariants came to topology from outside,
from representation theory and from quantum al-
gebra and quantum field theory, and we still can’t
quite motivate them in the language of topology.
Seen in the eyes of a topologist who studies objects
(and not a dual-topologist, who studies invariants
for their own sake), WRT invariants seem like arti-
ficial constructs.

• Other than their separation power WRT invariants
simply don’t do much in topology.

These two bullets are not unrelated, of course. What
isn’t natural in topology is unlikely to do much for topol-
ogy.

Yet topologists can’t fairly pretend that WRT invari-
ants don’t exist. They exist for sure. We simply don’t
understand them.

One of my long-term career goals is to find the proper
topology home for WRT invariants. I used to think that
this entailed understanding them and the processes lead-
ing to them better, but it may be that by now I understand
those well enough to suspect that that’s not where the
keys are hiding. I now believe in the following instead:

There is a natural home in topology for the
invariant Θ discussed earlier, and in that

home live many other invariants with formu-
las similar to Θ’s. The collection of all such
invariants is equivalent to the collection of
WRT invariants; except that the WRT invari-
ants make “a wrong basis” to that collection,
within which it is hard to see their naturality
and their utility.

The matrix gαβ, a key to the construction of Θ, is the
inverse matrix of a presentation matrix of the Alexan-
der module M of a knot K, the first homology of the
universal Abelian cover of the knot complement. There
are other presentation matrices for M and I expect that
many of them can be used to write alternative formu-
las for Θ. In particular, I expect that there should be
a “Seifert formula” for Θ, presenting it as a perturbed
Gaussian integral of the exponential of a Lagrangian L
which is a naturally-defined function on the homology
H of a Seifert surface Σ for K (or of a finite number
of copies of that homology). The quadratic part of the
Lagrangian should be the Seifert linking form, repeated
over several copies of H (and taken with different param-
eters T1, T2, . . . ).

Where would the Lagrangian L be coming from? To
compute the topologically most interesting knot poly-
nomial, the Alexander polynomial, one only studies the
linking and intersection numbers of curves on Σ. We are
clearly missing a lot of topology here. I expect that other
finite type invariants of curves on Σ will be used to pro-
duce the “perturbation” terms of L.

In my dreams, given a knot K we will pick a Seifert
surface Σ for K with homology vector space H. We
will then be asking ourselves, “which Lagrangians L on
nH (n copies of H, for various fixed values of n), when
integrated on nH using the rules of perturbative Gaus-
sian integration (namely, Feynman diagrams), will yield
knot invariants”? I expect that the answer to that ques-
tion is non-empty, for the currently strongest genuinely-
computable knot invariant Θ is most likely an exam-
ple (and a few more are at [BN5]). We ought to be
able to classify in simple terms the set of such La-
grangians. There should be plenty, and it should be
possible to describe them in topologically more natural
terms than “semi-simple Lie algebras and their represen-
tations”. The corresponding invariants will be strong and
easy to compute (as Θ is) and they should be topologi-
cally meaningful, as they will be intrinsically aware of
the topology of the Seifert surface Σ.

I expect that ultimately these Seifert-type invariants
will replace WRT invariants as a center of attention in
algebraic knot theory and low dimensional topology.
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Goal 2. Disprove the ribbon-slice conjecture. It is well
known that every ribbon knot is slice, and one of the
greatest open problems in knot theory is whether the
converse holds true; namely, whether every slice knot is
ribbon. This possible equivalence of ribbon knots with
slice knots is known as the “ribbon-slice conjecture”, and
many people believe it to be false. There are even pro-
posed counterexample (e.g., in [GST], and note that these
proposed counterexamples are rather large knots). What
is missing is a proof that these proposed counter exam-
ples aren’t ribbon knots.

What is needed is a knot invariant Ψ whose values
on ribbon knots are especially constrained. If such an in-
variant can be computed on those rather large proposed
counterexamples, and if its values on the proposed coun-
terexamples do not satisfy the ribbon constraints, we will
have disproved the ribbon-slice conjecture.

So we need an invariant Ψ that can be computed effi-
ciently on large knots, and that “sees” the Seifert surface
of a knot (as the Seifert surfaces of ribbon knots can be
taken to be of a special form, possibly leading to the re-
strictions on the values of Ψ; see “Seifert for Ribbon”
below).

If there ever was a good candidate for Ψ, it is our Θ
(in fact, a lot of my motivation for the development of
Θ was precisely that it would serve as Ψ). Yet a lot of
work remains to be done. I am sure there are Seifert for-
mulas for Θ, but I don’t know them yet. And once these
formulas are written, it would still be necessary to find
what constraints on their values can be obtained from the
existence of Seifert surfaces of the form that arises from
ribbons. This is a hard problem and I expect it will take
several years to find the answer.

Seifert for Ribbon. A ribbon knot with g ribbon sin-
gularities always has a Seifert surface Σ of genus g, in
which g of the 2g homology cycles can be jointly repre-
sented by a g-component unlink. See Figure 1.

If as I believe Θ has a Seifert formula as discussed
in Goal 1, in which all the ingredients of the Lagrangian
L are finite type invariants of curves representing homol-
ogy classes on Σ, the half-triviality of these curves as in-
dicated above will lead to strong restrictions on the form
of L which in themselves may lead to strong restrictions
on the values of Θ.

For the Alexander polynomial ∆, the same reason-
ing leads to the Fox-Milnor condition. See e.g. [Kau, pp.
212-213].

(a)

(b) (c)

Figure 1. A ribbon knot (a) and a ribbon sin-

gularity (b) (singularities in green), and a piece

of a Seifert surface for a ribbon knot near a rib-

bon singularity (c), with an unknotted homology

cycle in green. A ribbon knot with g ribbon sin-

gularities will have g of those, unlinked with each

other.

As for the other topics within my Notice of Intent
(ωεβ/NOI): Topic #4 is the core of this proposal as above.
Topic #2 was mentioned in passing within the above, and
will not be mentioned further. Topic #3 is mostly sub-
sumed within the discussion of topic #4 above. To a large
extent, ρ1 is very much like θ except with somewhat dif-
ferent specific formulas. For topics #1, #5, and #6, I will
simply repeat ωεβ/NOI with some modifications:
Topic 1. I plan to continue to study, along with Roland
van der Veen and others, how “solvable approximation”
of semisimple Lie algebras (Inonu-Wigner contractions
of their lower Borel subalgebras) leads via perturbed
Gaussian formulas (in spirit, QFT) to poly-time com-
putable knot invariants that “behave well” under useful
knot theoretic operations. I hope this sounds powerful;
it certainly sounds highly technical. Can we make it less
technical? Can we rely less on Lie algebra and quantum
algebra techniques and instead make the topic intrinsic to
knot theory? See [BN1, BV1, BV2, BN2].
Topic 5. Along with Zsuzsanna Dancso, Tamara Hogan,
Jessica Liu, and Nancy Scherich [BN3], and also along
with Yusuke Kuno [BK], I plan to continue to study knots
and tangles in a “Pole Dancing Studio” (PDS, a cylinder
with a few vertical lines removed) and their relationship
with the Goldman-Turaev Lie bialgebra and Kashiwara-
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Vergne (KV) equations [AKKN1, AKKN2]. Are solu-
tions of the KV equations sufficient to construct a ho-
momorphic expansion of tangles in a PDS up to strand-
strand degree 1? How is this related to my earlier work
with Dancso [BD1, BD2] on welded knots? The subject
is beautiful, yet it is a hard-to-penetrate patchwork of re-
sults and techniques and papers by different authors. In
the past, this feeling that a subject’s beauty is incongru-
ous with its complexity had been a great motivator for
me, often leading to deeper understanding. I have high
hopes for this topic too.
Topic 6. Recently [BN4], along with my Ph.D. student
Jessica Liu, we’ve found a truly elegant “signatures for
tangles” invariant (sorry for complimenting ourselves,
yet hey, it really is elegant). There is more to do be-
fore we can claim to fully understand these signatures. Is
there an Alexander invariant for tangles obtained using
the same “pushforward” techniques? Are its roots related
to the jumping points of the signature? Does it general-
ize to the multi-variable case? This topic was originally
conceived within an attempt to prove the Kashaev Signa-
ture Conjecture [Kas], but that conjecture is by now my
student’s Jessica Liu’s theorem [Li].

Literature review.
Θ is most likely equal to “the two loop contribu-

tion to the Kontsevich integral”, as studied by Garoufa-
lidis, Rozansky, Kricker, and in great detail by Ohtsuki
[GR, Ro1, Ro2, Ro3, Kr, Oh], continuing an older study
by myself and Garoufalidis [BG] (we haven’t proven
that, yet I expect we will soon). But the definitions used
by these authors are a lot more complicated than ours,
and do not lend themselves to efficient computations.
Θ is probably related to the invariant considered by

Garoufalidis, Kashaev, and Li in [GK, GL], as they share
many properties. Yet they are different, and our defini-
tions are simpler and lead to vastly faster computations.

Other than that, there isn’t a lot written yet about Θ.
Methodology.
To some extent my methodology is as dull as it gets.

I sit in my office (with my feet up if nobody’s looking),
or in a coffee shop (never with my feet up), or I ride the
bus or I lie in bed, and I think. Sometimes a pencil and a
piece of paper are involved too.

Yet in one way my methodology differs from that of
most mathematicians. Almost everything I do I imple-
ment on the computer almost immediately. It isn’t just
that I implement what I conceived with pencil and paper
once the latter matures. Rather, the pencil and paper and
the implementation are fully interleaved and integrated.
My implementations are mathematically-informed, and
my thoughts and scribbles never diverge much from what

can be implemented. I believe that Θ, the strongest
genuinely-computable knot invariant we presently know,
is a great success. Its strength is the result of a bit of in-
formed luck. Its computability isn’t luck. Its computabil-
ity is because I think about computability at nearly all
times. Computability was a part of the development pro-
cess of Θ throughout. I expect that my future work will
follow the same lines.

I am asked to comment here on issues of EDI (Equity,
Diversity, and Inclusion). On the surface, such issues do
not arise in mathematical research or within my method-
ology of research. Math is gender- and race-neutral, and
computers don’t know the races and genders of the peo-
ple punching their keyboards. This said, I am aware, and
over the years I became more and more aware, of how
differing backgrounds may lead to differing levels of ini-
tial preparedness, of how differing societal and cultural
expectations lead to different ways in which we present
ourselves, and of how inconsiderate feedback, or worse,
the wrong kind of attention, can greatly harm the motiva-
tion and success of young researchers.

With this (ever growing) awareness I’m doing my
best to make the atmosphere in my research group sup-
portive to all members of all under-represented groups.
The alternative, of losing great minds because perhaps
they dress or look differently, would be offensively
stupid.

I think I’ve had some success. Of my 17 PhD stu-
dents so far, 5 are women: one is a current student,
and the four that have already graduated all continued
within academia, two with tenured or tenure-track po-
sitions (at the University of Sydney and at Northeast-
ern University). My most recent graduated PhD student,
who defended his thesis last August, came from Ghana
to Canada back in 2017 specifically in order to work with
me, following links I have established when I volunteered
to give a course on algebraic topology at the University
of Ghana in 2010. I’ve had (and I have) a number of other
BIPOC students, but the definitions here are sometimes
ambiguous and do not belong in this document, so I will
refrain from including statistics. Of my 5 post-doctoral
fellows, 3 were women (one is current).

Impact.
I expect the work proposed here to revolutionize what

we know about knot invariants. The invariant Θ is al-
ready the strongest genuinely-computable invariant we
have, and it stands to get better by acquiring a solid topo-
logical foundation. In addition, I think there is a fair
chance that the work that I propose will lead to disprov-
ing the ribbon-slice conjecture, one of the most major
outstanding problems in knot theory.
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