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Knot Theory as an Excuse Discovery Grant Notice of Intent
I’m considered an expert on Knot Theory, yet I don’t understand knot theory at all. From a certain perspective,

Knot Theory is the study of some silly combinatorial objects, that are considered modulo equally silly relations. My
intuition as a student told me it must be a shallow topic, and there’s still a remnant of that intuition in me.

Yet time after time this intuition is proven wrong and instead of shallow, Knot Theory is very deep. So much
so, that Knot Theory sometimes serves to validate that other topics are interesting: if it has applications to Knot
Theory, it must be good. (Historically, number theory’s raison d’être had been similar; recently cryptography
became a further bonus).

My plan over the grant period would be to continue to use knot theory as an excuse and as a benchmark to study
several other topics, mostly in algebra:

1. I plan to continue to study, along with Roland van der Veen and others, how “solvable approximation” of
semisimple Lie algebras (Inonu-Wigner contractions of their lower Borel subalgebras) leads via perturbed
Gaussian formulas (in spirit, QFT) to poly-time computable knot invariants that “behave well” under useful
knot theoretic operations. I hope this sounds powerful; it certainly sounds highly technical. Can we make it
less technical? Can we rely less on Lie algebra and quantum algebra techniques and instead make the topic
intrinsic to knot theory? See ωεβ/SolvApp, ωεβ/PG, ωεβ/DaNang.

2. These invariants also have integral formulas, in terms of perturbed Gaussian integrals, which reduce the proofs
of their invariance to “use Fubini” (see ωεβ/ICBS). Is there a direct knot theoretic reason to expect such
formulas?

3. The simplest of these invariants, ρ1, is ridiculously simple to define (ωεβ/APAI, ωεβ/Cars) and it is perhaps
even more ridiculous how much we fail to understand it. In short, ρ1 is some quadratic expression in the
entries of A−1, where A is one of the standard matrices whose determinant is the Alexander polynomial ∆.
Could we start from other matrices B whose determinants are ∆? Can we prove Alexander-like properties of
ρ1 using its similarity with ∆? By direct computations we observe many such properties, yet we still don’t
know how to prove them. And the $1M question: does ρ1 have special properties on ribbon knots, similar to
the Fox-Milnor property of ∆? If it does, it may lead to a new criteria to detect non-ribbon knots. Such criteria
are in high demand for they may lead to the detection of counterexamples to the ribbon-slice conjecture, one
of the greatest outstanding problems in knot theory.

4. The second simplest of these invariants, θ, is presently the strongest genuinely-computable knot invariant
known (see ωεβ/ICBS). “Genuinely computable” means that we’ve computed it on huge knots with over 250
crossings (a slight weakening can be computed on knots with over 500 crossings). “Strongest” means that
on the first 59,937 knots (up to 14 crossings) it attains 58,819 distinct values (a deficit of 1,118), whereas
the HOMFLY-PT polynomial and Khovanov homology taken together (famous yet not as computable) have a
much greater deficit of 10,788. I plan to continue to study θ.

5. Along with Zsuzsanna Dancso, Tamara Hogan, Jessica Liu, and Nancy Scherich (ωεβ/PDS), I plan to con-
tinue to study knots and tangles in a “pole dancing studio” (PDS, a cylinder with a few vertical lines re-
moved) and their relationship with the Goldman-Turaev Lie bialgebra and Kashiwara-Vergne (KV) equations
(ωεβ/AKKN). Are solutions of the KV equations sufficient to construct a homomorphic expansion of tangles
in a PDS up to strand-strand degree 1? How is this related to my earlier work with Dancso (ωεβ/WKO1,
ωεβ/WKO2) on welded knots? The subject is beautiful, yet it is a hard-to-penetrate patchwork of results and
techniques and papers by different authors. In the past, this feeling that a subject’s beauty is incongruous with
its complexity had been a great motivator for me, often leading to deeper understanding. I have high hopes for
this topic too.

6. Recently (ωεβ/PQ), along with Jessica Liu, we’ve found a truly elegant “signatures for tangles” invariant
(sorry for complimenting ourselves, yet hey, it really is elegant). There is more to do before we can claim to
fully understand these signatures, and I hope to pursue that over the grant period.
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Knot Theory as an Excuse Discovery Grant Proposal Summary
One of the major triumphs of mathematics in the 1980s, related to at least 3 Fields medals (Jones, Drinfel’d,

Witten) was the unexpected realization that low dimensional topology, and in particular knot theory, is closely
related to quantum field theory and to the theory of quantum groups. Knot theory is mundane and ages-old; anything
“quantum” seems hyper-modern. Why would the two have anything to do with each other?

The answer is long and complicated and has a lot to do with the “Yang-Baxter Equation” (YBE). The YBE on
the one hand can be interpreted in knot theory as “the third Reidemeister move”, or as “controlling the most basic
interaction of 3 pieces of string” (this turns out to be a very crucial part of knot theory). On the other hand solutions
of the YBE arise from “quantum” machinery. Hence the quantum is useful to the knotted, and by similar ways, to
the rest of low dimensional topology.

But “quantum” has a caveat, which makes it super-exciting (to some) yet bounds its usefulness (to others). When
quantum systems grow large (as they do when the knot or low-dimensional space we study grows complicated), their
“state space” grows at an exponential rate. “Quantum computers” aim to exploit this fact and make large quantum
systems performs overwhelmingly large computations by utilizing their vast state spaces. But quantum computers
aren’t here yet, may take many years to come, suffer from other limits on what they can do, and much of low-
dimensional topology is anyway outside of these limits. So at least for now and likely forever, many things that have
“quantum” in their description are exponentially-complex to compute, which in practice means that they cannot be
computed beyond a few simple cases.

Recently van der Veen and myself, following Rozansky and Overbay and Ohtsuki, found a corner (figuratively
speaking) of the vast state space of the quantum machinery used in knot theory, which can be described extremely
simply, which computes in just polynomial complexity, and which carries enough information to still speak to knot
theory. The “knot invariants” ρd and θ constructed that way seem to be the strongest invariants we know that are
computable even for very large knots and they have the potential of relating to knot properties such that their genus
and whether or not knots are slice or ribbon.

Our approach in itself comes from sophisticated quantum algebra, yet the results can be described using nothing
more than first-year university mathematics. More often than not, when a result is simple there is also a simple way
to derive it, and it is often crucial to find that simple way. We don’t know yet how to tell the ρd / θ story in a language
as simple as the formulas at the end of that story, and we dream that over the grant period we will learn to do better.

We also dream to find topological applications of ρd / θ and especially of θ, and to continue our work on other
topics within knot theory.
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Knot Theory as an Excuse Discovery Grant Proposal

Recent Progress.
For the purpose of this proposal, I would like to con-

centrate on topic #4 in my Notice of Intent. Recently, as a
direct outcome of the research supported by my previous
NSERC grant, Roland van der Veen and I commenced a
study of a knot invariant Θ, which is the strongest gen-
uinely computable knot invariant presently known.
Let me start by discussing the words in this bold state-
ment.

A knot is a piece of
string tangled up in 3D
space; some examples ap-
pear on the right. We con-
sider two such tanglings
to be equivalent if you can
get from one to the other
by continuously deforming the strings from one shape to
the other, without cutting them at any point. Knots may
appear esoteric, yet they are key to the understanding of
all 3-dimensional and 4-dimensional spaces. For a light
introduction, see [Mu].

It is in general very difficult to decide if two knots are
equivalent; the best algorithms to do so take an exponen-
tial amount of time and hence they are impractical. So
we seek what’s called “knot invariants” – computable
functions that assign to a knot some simpler quantities,
such as polynomials or matrices, in a way so that equiva-
lent knots are assigned equal invariants. It is even better
if one can read topological properties of the knot from
the values of its invariants.

By genuinely computable we mean that we can
compute Θ on arbitrary knots with up to about 300 cross-
ings. For almost any other invariant presently known,
that would be science fiction.

By strongest we mean that Θ appears to be quite
good at separating knots. For example, on the 313,230
prime knots with up to 15 crossings, Θ attains 306,472
distinct values – a deficit of 6,758. The better known
yet less computable HOMFLY-PT polynomial and Kho-
vanov homology, taken together, have a deficit of 70,245,
more than 10 times the worse.

Aside. The main part of the value of Θ is a two-
variable polynomial. Such polynomials can be regraded
as 2D arrays of coefficients, and these can be considered
as coding the colour values of pixels. Hence the values of
Θ can be displayed as pictures. The picture correspond-
ing to a random 317 crossing knot (from [DHOEBL])
appears below. There are patterns in these pictures, and

one of my less-major goals within the grant period will
be to understand them.

While perhaps not strictly necessary, I’d like to give
here a complete definition of Θ.
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Preparation. Given an oriented knot
K, we draw it in the plane as a long knot
diagram D with n crossings in such a
way that the two strands intersecting at
each crossing are pointing up (that’s al-
ways possible because we can always ro-
tate crossings as needed), and so that at
its beginning and at its end the knot is
oriented upward. We label each edge of
the diagram with two integer labels: a
running index k which runs from 1 to
2n + 1, and a “rotation number” φk, the geometric ro-
tation number of that edge (the signed number of times
the tangent to the edge is horizontal and heading right,
with cups counted with +1 signs and caps with −1; this
number is well defined because at their ends, all edges
are headed up). On the right the running index runs from
1 to 7, and the rotation numbers for all edges are 0 except
for φ4, which is −1.

Making a matrix. We let A be the (2n + 1) × (2n + 1)
matrix with entries in the ring Z[T±1] of Laurent polyno-
mials in a formal variable T obtained by starting with the
identity matrix I2n+1 and adding to it one contribution per
crossing as follows (s is the sign of the crossing):

1
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j+1 i+1 j+1i+1

i ij
s = +1 s = −1

j
−→

add at column i+1 column j+1
row i −T s T s − 1
row j 0 −1

(1)

For our example, A comes out to be:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


Please count everything so far as “trivial”. The ma-

trix A is a presentation matrix for the Alexander mod-
ule of K, obtained by using Fox calculus on the lower
Wirtinger presentation. Up to a unit ±T •, its determinant
is the normalized Alexander polynomial ∆ and there’s
nothing new about it. In fact,

∆ = T (−φ−w)/2 det(A), with φ =
∑

k

φk, w =
∑

c

s.

Note that in our example ∆ = T − 1 + T−1.
Doing something new. Let G = (gαβ) = A−1 be the

inverse matrix of A, so in our example, G is

1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 −
(T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1


.

There is little precedence for inverting a presentation
matrix, so already here we are in little-explored territory.

Let T1 and T2 be indeterminates and let T3 = T1T2.
For ν = 1, 2, 3 let ∆ν and Gν = (gναβ) be ∆ and G subject
to the substitution T → Tν. Now define

θ(K) B ∆1∆2∆3

∑
c

R11(c) +
∑
c0,c1

R12(c0, c1)

+
∑

k

Γ1(φk, k)

 , (2)

where the first summation is over crossings c = (s, i, j)
(with s, i, j as in (1)), the second is over pairs of cross-
ings (c0 = (s0, i0, j0), c1 = (s1, i1, j1)), and the third is
over edges k, and where

R11[s_, i_, j_] =

s 1/ 2 - g3ii + T2
s g1ii g2ji - g1ii g2jj -

T2
s
- 1 g2ji g3ii + 2 g2jj g3ii - 1 - T3

s
 g2ji g3ji -

g2ii g3jj - T2
s g2ji g3jj + g1ii g3jj +

T1
s
- 1 g1ji T2

2 s g2ji - T2
s g2jj + T2

s g3jj +

T3
s
- 1 g3ji

1 - T2
s g1ii - T1

s
- 1 T2

s
+ 1 g1ji +

T2
s
- 2 g2jj + g2ij T2

s
- 1;

R12[{s0_, i0_, j0_}, {s1_, i1_, j1_}] =

s1 T1
s0

- 1 T2
s1

- 1-1
T3

s1
- 1 g1,j1,i0 g3,j0,i1

 T2
s0 g2,i1,i0 - g2,i1,j0 - T2

s0 g2,j1,i0 - g2,j1,j0;

and
Γ1[φ_, k_] = -φ/ 2 + φ g3kk;

(The formulas above were computer-generated from the
source code of a program that computes Θ and that was
verified throughly. This guarantees the absence of typos.)

Now let Θ(K) = (∆(K), θ(K)) (the computation of ∆
is a part of the computation of θ, so including it here is not
artificial). This completes the definition of Θ(K). Yet, to
emphasize that the definition above is actually quite sim-
ple, here is a complete implementation of Θ, written in
Matematica [Wo]:
T3 = T1 T2;

Θ[K_] :=

Module{Cs, φ, n, A, s, i, j, k, Δ, G, ν, α,

β, gEval, c, z},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 += 
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

gEval[ℰ_] :=

Factor[ℰ /. gν_,α_,β_  (G〚α, β〛 /. T  Tν)];

z = gEval
k=1

n
R11 @@ Cs〚k〛;

z += gEval
k1=1

n


k2=1

n
R12[Cs〚k1〛, Cs〚k2〛];

z += gEval
k=1

2 n
Γ1[φ〚k〛, k];

{Δ, (Δ /. T  T1) (Δ /. T  T2) (Δ /. T  T3) z} //

Factor ;

2
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Note 1. We note the similarity between the formulas
written here forΘwith evaluations of perturbed Gaussian
integrals via Feynman diagrams. In both cases the end re-
sult is a sum of polynomials in the entries of the inverse
of a matrix. This similarity can be made precise, and
indeed, in [BN5] I write a perturbed Gaussian integral
formula for Θ, in which the Lagrangian is a sum over the
crossings of K of quadratic terms that correspond to the
matrix A (and whose inverse becomes G) and of higher
order perturbation terms. The integration is carried out
over a space whose dimension is 6 times the number of
edges in a diagram D of K — a space that has some com-
binatorial significance (as it pertains to a knot diagram)
but no immediate topological significance.

Objectives.
I have two long-term career goals. They are radical

and it is time to out them.
Goal 1. It’s time to depreciate Witten-Reshetikhin-
Turaev invariants (WRT) within knot theory and low di-
mensional topology. This may sound like the words of a
lunatic, seeing that so so much has been written about the
Chern-Simons-Witten quantum field theory and about
Reshetikhin-Turaev invariants (including by myself). Yet
please, bear with me and keep an open mind:

• WRT invariants came to topology from outside,
from representation theory and from quantum al-
gebra and quantum field theory, and we still can’t
quite motivate them in the language of topology.
Seen in the eyes of a topologist who studies objects
(and not a dual-topologist, who studies invariants
for their own sake), WRT invariants seem like arti-
ficial constructs.

• Other than their separation power WRT invariants
simply don’t do much in topology.

These two bullets are not unrelated, of course. What
isn’t natural in topology is unlikely to do much for topol-
ogy.

Yet topologists can’t fairly pretend that WRT invari-
ants don’t exist. They exist for sure. We simply don’t
understand them.

One of my long-term career goals is to find the proper
topology home for WRT invariants. I used to think that
this entailed understanding them and the processes lead-
ing to them better, but it may be that by now I understand
those well enough to suspect that that’s not where the
keys are hiding. I now believe in the following instead:

There is a natural home in topology for the
invariant Θ discussed earlier, and in that

home live many other invariants with formu-
las similar to Θ’s. The collection of all such
invariants is equivalent to the collection of
WRT invariants; except that the WRT invari-
ants make “a wrong basis” to that collection,
within which it is hard to see their naturality
and their utility.

The matrix gαβ, a key to the construction of Θ, is the
inverse matrix of a presentation matrix of the Alexan-
der module M of a knot K, the first homology of the
universal Abelian cover of the knot complement. There
are other presentation matrices for M and I expect that
many of them can be used to write alternative formu-
las for Θ. In particular, I expect that there should be
a “Seifert formula” for Θ, presenting it as a perturbed
Gaussian integral of the exponential of a Lagrangian L
which is a naturally-defined function on the homology
H of a Seifert surface Σ for K (or of a finite number
of copies of that homology). The quadratic part of the
Lagrangian should be the Seifert linking form, repeated
over several copies of H (and taken with different param-
eters T1, T2, . . . ).

Where would the Lagrangian L be coming from? To
compute the topologically most interesting knot poly-
nomial, the Alexander polynomial, one only studies the
linking and intersection numbers of curves on Σ. We are
clearly missing a lot of topology here. I expect that other
finite type invariants of curves on Σ will be used to pro-
duce the “perturbation” terms of L.

In my dreams, given a knot K we will pick a Seifert
surface Σ for K with homology vector space H. We
will then be asking ourselves, “which Lagrangians L on
nH (n copies of H, for various fixed values of n), when
integrated on nH using the rules of perturbative Gaus-
sian integration (namely, Feynman diagrams), will yield
knot invariants”? I expect that the answer to that ques-
tion is non-empty, for the currently strongest genuinely-
computable knot invariant Θ is most likely an exam-
ple (and a few more are at [BN5]). We ought to be
able to classify in simple terms the set of such La-
grangians. There should be plenty, and it should be
possible to describe them in topologically more natural
terms than “semi-simple Lie algebras and their represen-
tations”. The corresponding invariants will be strong and
easy to compute (as Θ is) and they should be topologi-
cally meaningful, as they will be intrinsically aware of
the topology of the Seifert surface Σ.

I expect that ultimately these Seifert-type invariants
will replace WRT invariants as a center of attention in
algebraic knot theory and low dimensional topology.

3
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Goal 2. Disprove the ribbon-slice conjecture. It is well
known that every ribbon knot is slice, and one of the
greatest open problems in knot theory is whether the
converse holds true; namely, whether every slice knot is
ribbon. This possible equivalence of ribbon knots with
slice knots is known as the “ribbon-slice conjecture”, and
many people believe it to be false. There are even pro-
posed counterexample (e.g., in [GST], and note that these
proposed counterexamples are rather large knots). What
is missing is a proof that these proposed counter exam-
ples aren’t ribbon knots.

What is needed is a knot invariant Ψ whose values
on ribbon knots are especially constrained. If such an in-
variant can be computed on those rather large proposed
counterexamples, and if its values on the proposed coun-
terexamples do not satisfy the ribbon constraints, we will
have disproved the ribbon-slice conjecture.

So we need an invariant Ψ that can be computed effi-
ciently on large knots, and that “sees” the Seifert surface
of a knot (as the Seifert surfaces of ribbon knots can be
taken to be of a special form, possibly leading to the re-
strictions on the values of Ψ; see “Seifert for Ribbon”
below).

If there ever was a good candidate for Ψ, it is our Θ
(in fact, a lot of my motivation for the development of
Θ was precisely that it would serve as Ψ). Yet a lot of
work remains to be done. I am sure there are Seifert for-
mulas for Θ, but I don’t know them yet. And once these
formulas are written, it would still be necessary to find
what constraints on their values can be obtained from the
existence of Seifert surfaces of the form that arises from
ribbons. This is a hard problem and I expect it will take
several years to find the answer.

Seifert for Ribbon. A ribbon knot with g ribbon sin-
gularities always has a Seifert surface Σ of genus g, in
which g of the 2g homology cycles can be jointly repre-
sented by a g-component unlink. See Figure 1.

If as I believe Θ has a Seifert formula as discussed
in Goal 1, in which all the ingredients of the Lagrangian
L are finite type invariants of curves representing homol-
ogy classes on Σ, the half-triviality of these curves as in-
dicated above will lead to strong restrictions on the form
of L which in themselves may lead to strong restrictions
on the values of Θ.

For the Alexander polynomial ∆, the same reason-
ing leads to the Fox-Milnor condition. See e.g. [Kau, pp.
212-213].

(a)

(b) (c)

Figure 1. A ribbon knot (a) and a ribbon sin-

gularity (b) (singularities in green), and a piece

of a Seifert surface for a ribbon knot near a rib-

bon singularity (c), with an unknotted homology

cycle in green. A ribbon knot with g ribbon sin-

gularities will have g of those, unlinked with each

other.

As for the other topics within my Notice of Intent
(ωεβ/NOI): Topic #4 is the core of this proposal as above.
Topic #2 was mentioned in passing within the above, and
will not be mentioned further. Topic #3 is mostly sub-
sumed within the discussion of topic #4 above. To a large
extent, ρ1 is very much like θ except with somewhat dif-
ferent specific formulas. For topics #1, #5, and #6, I will
simply repeat ωεβ/NOI with some modifications:
Topic 1. I plan to continue to study, along with Roland
van der Veen and others, how “solvable approximation”
of semisimple Lie algebras (Inonu-Wigner contractions
of their lower Borel subalgebras) leads via perturbed
Gaussian formulas (in spirit, QFT) to poly-time com-
putable knot invariants that “behave well” under useful
knot theoretic operations. I hope this sounds powerful;
it certainly sounds highly technical. Can we make it less
technical? Can we rely less on Lie algebra and quantum
algebra techniques and instead make the topic intrinsic to
knot theory? See [BN1, BV1, BV2, BN2].
Topic 5. Along with Zsuzsanna Dancso, Tamara Hogan,
Jessica Liu, and Nancy Scherich [BN3], and also along
with Yusuke Kuno [BK], I plan to continue to study knots
and tangles in a “Pole Dancing Studio” (PDS, a cylinder
with a few vertical lines removed) and their relationship
with the Goldman-Turaev Lie bialgebra and Kashiwara-
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Vergne (KV) equations [AKKN1, AKKN2]. Are solu-
tions of the KV equations sufficient to construct a ho-
momorphic expansion of tangles in a PDS up to strand-
strand degree 1? How is this related to my earlier work
with Dancso [BD1, BD2] on welded knots? The subject
is beautiful, yet it is a hard-to-penetrate patchwork of re-
sults and techniques and papers by different authors. In
the past, this feeling that a subject’s beauty is incongru-
ous with its complexity had been a great motivator for
me, often leading to deeper understanding. I have high
hopes for this topic too.
Topic 6. Recently [BN4], along with my Ph.D. student
Jessica Liu, we’ve found a truly elegant “signatures for
tangles” invariant (sorry for complimenting ourselves,
yet hey, it really is elegant). There is more to do be-
fore we can claim to fully understand these signatures. Is
there an Alexander invariant for tangles obtained using
the same “pushforward” techniques? Are its roots related
to the jumping points of the signature? Does it general-
ize to the multi-variable case? This topic was originally
conceived within an attempt to prove the Kashaev Signa-
ture Conjecture [Kas], but that conjecture is by now my
student’s Jessica Liu’s theorem [Li].

Literature review.
Θ is most likely equal to “the two loop contribu-

tion to the Kontsevich integral”, as studied by Garoufa-
lidis, Rozansky, Kricker, and in great detail by Ohtsuki
[GR, Ro1, Ro2, Ro3, Kr, Oh], continuing an older study
by myself and Garoufalidis [BG] (we haven’t proven
that, yet I expect we will soon). But the definitions used
by these authors are a lot more complicated than ours,
and do not lend themselves to efficient computations.
Θ is probably related to the invariant considered by

Garoufalidis, Kashaev, and Li in [GK, GL], as they share
many properties. Yet they are different, and our defini-
tions are simpler and lead to vastly faster computations.

Other than that, there isn’t a lot written yet about Θ.
Methodology.
To some extent my methodology is as dull as it gets.

I sit in my office (with my feet up if nobody’s looking),
or in a coffee shop (never with my feet up), or I ride the
bus or I lie in bed, and I think. Sometimes a pencil and a
piece of paper are involved too.

Yet in one way my methodology differs from that of
most mathematicians. Almost everything I do I imple-
ment on the computer almost immediately. It isn’t just
that I implement what I conceived with pencil and paper
once the latter matures. Rather, the pencil and paper and
the implementation are fully interleaved and integrated.
My implementations are mathematically-informed, and
my thoughts and scribbles never diverge much from what

can be implemented. I believe that Θ, the strongest
genuinely-computable knot invariant we presently know,
is a great success. Its strength is the result of a bit of in-
formed luck. Its computability isn’t luck. Its computabil-
ity is because I think about computability at nearly all
times. Computability was a part of the development pro-
cess of Θ throughout. I expect that my future work will
follow the same lines.

I am asked to comment here on issues of EDI (Equity,
Diversity, and Inclusion). On the surface, such issues do
not arise in mathematical research or within my method-
ology of research. Math is gender- and race-neutral, and
computers don’t know the races and genders of the peo-
ple punching their keyboards. This said, I am aware, and
over the years I became more and more aware, of how
differing backgrounds may lead to differing levels of ini-
tial preparedness, of how differing societal and cultural
expectations lead to different ways in which we present
ourselves, and of how inconsiderate feedback, or worse,
the wrong kind of attention, can greatly harm the motiva-
tion and success of young researchers.

With this (ever growing) awareness I’m doing my
best to make the atmosphere in my research group sup-
portive to all members of all under-represented groups.
The alternative, of losing great minds because perhaps
they dress or look differently, would be offensively
stupid.

I think I’ve had some success. Of my 17 PhD stu-
dents so far, 5 are women: one is a current student,
and the four that have already graduated all continued
within academia, two with tenured or tenure-track po-
sitions (at the University of Sydney and at Northeast-
ern University). My most recent graduated PhD student,
who defended his thesis last August, came from Ghana
to Canada back in 2017 specifically in order to work with
me, following links I have established when I volunteered
to give a course on algebraic topology at the University
of Ghana in 2010. I’ve had (and I have) a number of other
BIPOC students, but the definitions here are sometimes
ambiguous and do not belong in this document, so I will
refrain from including statistics. Of my 5 post-doctoral
fellows, 3 were women (one is current).

Impact.
I expect the work proposed here to revolutionize what

we know about knot invariants. The invariant Θ is al-
ready the strongest genuinely-computable invariant we
have, and it stands to get better by acquiring a solid topo-
logical foundation. In addition, I think there is a fair
chance that the work that I propose will lead to disprov-
ing the ribbon-slice conjecture, one of the most major
outstanding problems in knot theory.

5

http://drorbn.net/d24/
http://www.math.toronto.edu/~drorbn


ωεβBhttp://drorbn.net/d24/ Dror Bar-Natan

Knot Theory as an Excuse Discovery Grant Proposal Budget Justification

Salaries and Benefits. Since 2017 I have graduated
four PhD students (Travis Ens, Jesse Frohlich, Huan Vo,
Leonard Afeke). I am presently working with three more
(Jessica Liu, Daniel Martchenkov, Kevin Santos). I plan
to support each of those at around $10,000 per year. In
addition I’ve had a number of master’s students, I expect
to have about two more per year, and to support each at
about $5,000 per year. Likewise I’ve taken a number of
undergraduate “summer project” students, and I hope to
support about two such students per year, at about $2,500
each.

I hope to be able to support a postdoctoral fellow
throughout the grant period, at about $50,000 per year.

Equipment or Facility. Many of my past projects re-
quired massive computations, often running for months
at a time (e.g., the calculation of all the invariants ap-
pearing on the Knot Atlas, http://katlas.org), and
many of the results are made available by means of a
dedicated web server, http://drorbn.net, especially
http://drorbn.net/ap. My current proposal will
lead me to continue using computers in a similar way.
This will be a lot more effective if I would be able to pur-

chase and maintain current hardware. Hence the $3,200
allocated per year for purchase or rental of computers and
peripherals, and the $700 allocated per year for the main-
tenance of those. Also, I will have to pay user fees for
some of the programs I will be using (Mathematica, for
example) and also to some shared facilities to be pro-
vided by my university — internet connection, backup
services, etc. I am requesting an amount of $2,000 per
year for these purposes.

Materials and Supplies. This amount of $700 per
year will be used primarily to purchase office supplies
and printer paper and ink.

Travel. In the past I have traveled extensively and
gave presentations on my work in a large number of do-
mestic and foreign universities and in many international
conferences. I expect this will continue throughout the
years of my contract. In addition I hope to support some
travel by my graduate students and postdoctoral fellows,
and to support visits by my scientific collaborators to
Toronto. I am requesting an amount of $9,000 per year
for these purposes.

Books. Need no explain.
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Knot Theory as an Excuse Discovery Grant Proposal HQP Training Plan
My project clearly spreads in several directions. This means that there is ample room for advanced undergraduate

students, for graduate students, and for postdoctoral fellows to take part in the research outlined in my proposal
and/or in closely related research. This allowed me to participate in the training of many students and fellows in the
past, and will continue to allow me to do the same in the future.

I share my significant use of computers as a tool for research, presentation and dissemination of knowledge with
my students and postdoctoral fellows. I believe this adds major further quality to the training they receive.

Though frankly, I still don’t know how to do the thing I’d really want to do.
For me, the best mathematics is the math that can be implemented on a computer. This ranges from the simplest,

say Gaussian elimination or the Fibonacci sequence, and continues all the way to the fanciest and most abstract, be
it a planar-algebra category-theory ultra-fast computation of Khovanov homology or a free-Lie-algebra meta-group-
action-based computation of a non-commutative generalization of the Alexander polynomial or the implementation
of the full portfolio of operations around the quantum universal enveloping algebras of solvable approximations of
semisimple Lie algebras. I’ve implemented these, as well as a dozen other versions of the Alexander polynomial,
and a dozen other knot invariants, and a very large number of other little things within knot theory, and a computer
solution of the Rubik’s cube, and a hyperbolic-geometry based algorithm for optimal camera motion, and I made
computer generated pictures of various fancy links and surfaces and of steps within Arnold’s resolution of Hilbert’s
13th problem, and very many other things, big and small. (And most are on my web site).

For me, that’s what keeps mathematics alive and sincere and believable (and when it comes to the graphics,
sometimes also visually beautiful).

I wish I knew how to teach my students to actually compute (and draw) what they are talking about, and gain the
benefit that that entails, and pass it on to their students later on. I wish they would do it routinely and often, and with
joy. I think I’ve contributed some, and I hope to contribute further, to my students by sharing with them my love of
the implementable (and teaching them a bit of the how-to).

A side benefit is that if and when my students do become proficient with implementation, they become highly
desirable in plenty of other fields of science and industry.

Knot Theory as an Excuse Discovery Grant Relationship to Other Research Support

I am the lucky recipient of a C$248,447 grant from the Chu Family Foundation (NYC), used to fully fund a
post-doctoral fellow, Tamara Hogan, for a period of 3 years. Dr. Hogan is working on what amounts to Topic #5 in
my proposal. This grant cannot be used for any other purpose.
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Knot Theory as an Excuse Discovery Grant Most Significant Contributions

Computing Finite Type Invariants Efficiently, with I. Bar-Natan, I. Halacheva, and N. Scherich,
arXiv:2408.15942.
Abstract. We describe an efficient algorithm to compute finite type invariants of type k by first creating, for a given
knot K with n crossings, a look-up table for all subdiagrams of K of size ⌈ k

2⌉ indexed by dyadic intervals in [0, 2n−1].
Using this algorithm, any such finite type invariant can be computed on an n-crossing knot in time ∼ n⌈

k
2 ⌉, a lot faster

than the previously best published bound of ∼ nk.
A Perturbed-Alexander Invariant, with R. van der Veen, Quantum Topology 15 (2024) 449–472, ωεβ/APAI,

arXiv:2206.12298.
Abstract. In this note we give concise formulas, which lead to a simple and fast computer program that computes a
powerful knot invariant. This invariant ρ1 is not new, yet our formulas are by far the simplest and fastest: given a knot
we write one of the standard matrices A whose determinant is its Alexander polynomial, yet instead of computing
the determinant we consider a certain quadratic expression in the entries of A−1. The proximity of our formulas to
the Alexander polynomial suggest that they should have a topological explanation. This we don’t have yet.

Perturbed Gaussian Generating Functions for Universal Knot Invariants, with R. van der Veen,
arXiv:2109.02057.
Abstract. We introduce a new approach to universal quantum knot invariants that emphasizes generating functions
instead of generators and relations. All the relevant generating functions are shown to be perturbed Gaussians of the
form PeG, where G is quadratic and P is a suitably restricted “perturbation”. After developing a calculus for such
Gaussians in general we focus on the rank one invariant ZD in detail. We discuss how it dominates the sl2-colored
Jones polynomials and relates to knot genus and Whitehead doubling. In addition to being a strong knot invariant
that behaves well under natural operations on tangles ZD is also computable in polynomial time in the crossing
number of the knot. We provide a full implementation of the invariant and provide a table in an appendix.

Over then Under Tangles, with Z. Dancso and R. van der Veen, Journal of Knot Theory and its Ramifications
32-8 (2023), arXiv:2007.09828.
Abstract. Over-then-Under (OU) tangles are oriented tangles whose strands travel through all of their over crossings
before any under crossings. In this paper we discuss the idea of gliding: an algorithm by which tangle diagrams could
be brought to OU form. By analyzing cases in which the algorithm converges, we obtain a braid classification result,
which we also extend to virtual braids, and provide a Mathematica implementation. We discuss other instances
of successful “gliding ideas” in the literature – sometimes in disguise – such as the Drinfel’d double construction,
Enriquez’s work on quantization of Lie bialgebras, and Audoux and Meilhan’s classification of welded homotopy
links.

Handout Portfolio. I see lecturing and the assimilation of mathematical knowledge and the exposition of its
beauty as one of my primary goals. I aim to polish my lectures to perfection; almost every lecture I give comes
with a colourful handout summarizing the information in it, and with a web space with links to said handout, to
relevant papers and programs, and almost always, with a link to a video recording of the talk itself. My 5th attached
contribution is merely a reminder of that — an abridged version of my Handout Portfolio (the full version is at
http://drorbn.net/hp).

Knot Theory as an Excuse Discovery Grant 4 Samples of Research Contributions

See ωεβ/Rooting, ωεβ/APAI, ωεβ/PG, ωεβ/OU, and ωεβ/hp.
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