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Knot Theory as an Excuse Discovery Grant Proposal

Grant proposals are often written as if they describe
a victory parade. “The principal investigator will march
from A to B to C collecting trophies along the way”. I
hope this one is written differently. There is a single “!”
in it, and it is in quotes. There are plenty of “?” in it.
Each one represents a dream. A question that I plan to
study and that I hope I have the tools to address and to
elucidate, if not resolve. Will the NSERC help?

I have chosen to concentrate in this proposal on what
was topic #2 in my Notice of Intent (ωεβ/NOI) — the in-
variant ρ1: a well-connected, strong, homomorphic, and
ridiculously easy to define and to compute knot invari-
ant, which is nevertheless far from being understood and
utilized. Let me tell you some more about it.

ρ1 is not new. It traces back to work by Rozan-
sky [Ro3, Ro4] and Overbay [Ov] and to work

by Ohtsuki [Oh], which in itself traces back to work
by Garoufalidis and myself [BNG] proving the Melvin-
Morton-Rozansky Conjecture [MM, Ro1, Ro2] which
relates the Coloured Jones polynomial [Jo] with the
Alexander polynomial [Al]. Yet my recent work with
Roland van der Veen [BV3] makes it ridiculously easy to
define and to compute and shows it to be “homomorphic”
(see below) and hence suggests that ρ1 may have far-
reaching topological implications and applications. Does
it?

ρ1 is thus dominated by the coloured Jones polyno-
mial. That can be seen as a handicap, for suppos-

edly we already “understand” the coloured Jones polyno-
mial. But no, we don’t really. The coloured Jones poly-
nomial is complicated to define and nearly impossible to
compute for knots with more than just a few crossings. A
section of the coloured Jones that is simple and easy and
which is more than the “classical” Alexander polynomial
may well be the golden key that many have been looking
for, that will finally bring the power of quantum invari-
ants to use within classical topology. Is it? (It is a bit of
an absurd, and a bit of a sore point, that quantum invari-
ants that are so much stronger than the Alexander polyno-
mial say so little, beyond what Alexander already knows,
on classical properties of knots such as their genus, un-
knotting numbers, and whether or not they are slice or
ribbon or fibred).

ρ1 really is easy to define, so here’s a definition, in full
and with a worked-out example, following [BV3].
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Preparation. Given an oriented knot
K, we draw it in the plane as a long knot
diagram D with n crossings in such a
way that the two strands intersecting at
each crossing are pointed up (that’s al-
ways possible because we can always ro-
tate crossings as needed), and so that at
its beginning and at its end the knot is
oriented upward. We label each edge of
the diagram with two integer labels: a
running index k which runs from 1 to
2n + 1, and a “rotation number” φk, the geometric ro-
tation number of that edge (the signed number of times
the tangent to the edge is horizontal and heading right,
with cups counted with +1 signs and caps with −1; this
number is well defined because at their ends, all edges
are headed up). On the right the running index runs from
1 to 7, and the rotation numbers for all edges are 0 (and
hence are omitted) except for φ4, which is −1.

Making a matrix. We let A be the (2n + 1) × (2n + 1)
matrix with entries in the ring Z[T±1] of Laurent polyno-
mials in a formal variable T obtained by starting with the
identity matrix I2n+1 and adding to it one contribution per
crossing as follows (s is the sign of the crossing):

i ij
s = +1 s = −1

j

j + 1 i + 1 i + 1 j + 1

−→

add at column i + 1 column j + 1
row i −T s T s − 1
row j 0 −1

(1)

For our example, A comes out to be:

A =



1 −T 0 0 T − 1 0 0
0 1 −1 0 0 0 0
0 0 1 −T 0 0 T − 1
0 0 0 1 −1 0 0
0 0 T − 1 0 1 −T 0
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


Please count everything so far as “trivial”. The ma-

trix A is a presentation matrix for the Alexander mod-
ule of K, obtained by using Fox calculus on the lower
Wirtinger presentation. Up to a unit ±T •, it’s deter-
minant is the normalized Alexander polynomial ∆ and
there’s nothing new about it. Note that in our example
∆ = T − 1 + T−1.
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Doing something new. Let G = (gαβ) = A−1 be the
inverse matrix of A, so in our example, G is



1 T 1 T 1 T 1
0 1 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1

T 2−T+1
T

T 2−T+1
T

T 2−T+1
T 2

T 2−T+1 1
0 0 1−T

T 2−T+1
1

T 2−T+1
1

T 2−T+1
T

T 2−T+1 1
0 0 1−T

T 2−T+1 −
(T−1)T
T 2−T+1

1
T 2−T+1

T
T 2−T+1 1

0 0 0 0 0 1 1
0 0 0 0 0 0 1


.

Now define

ρ1 B ∆
2

∑
c

R1(c) −
∑

k

φk (gkk − 1/2)

 , (2)

where the first summation is over crossings c and the sec-
ond is over edges k, and where

R1(c) = R1(s, i, j) B

s
(
g ji
(
g j+1, j + g j, j+1 − gi j

)
− gii
(
g j, j+1 − 1

)
− 1/2

)
(3)

where for a crossing c, the parameters s, i, and j are as
in (1). This completes the definition of ρ1. It’s invariance
is proven by elementary means1 in [BV3].

For our trefoil example, using the values of ∆ and of
gαβ established before,

ρ1 = ∆
2(R1(1, 3, 6) + R1(1, 5, 2) + R1(1, 1, 4)

− (−1)(g44 − 1/2))

= ∆2(g63(g76 + g67 − g36) − g33(g67 − 1) − 1/2

g25(g32 + g23 − g52) − g55(g23 − 1) − 1/2

g41(g54 + g45 − g14) − g11(g45 − 1) − 1/2

+ g44 − 1/2)

= −T 2 + 2T − 2 + 2T−1 − T−2.

But wait, what? Inverting a presentation matrix?
What does it mean? Who does that? Forming a quadratic
expression out of the entries of said inverse? Who does
that? What does it mean?

ρ1 really is easy to implement. As evidence for that,
here is a complete implementation, written in Math-

ematica [Wo]. The only reason it is included to make a
point: It is ridiculously short.

R1[s_, i_, j_] :=

s (gji (gj+,j + gj,j+ - gij) - gii (gj,j+ - 1) - 1/2);

Z[K_] := Module{Cs, φ, n, A, s, i, j, k, Δ, G, ρ1},

{Cs, φ} = Rot[K]; n = Length[Cs];

A = IdentityMatrix[2 n + 1];

CasesCs, {s_, i_, j_} 

A〚{i, j}, {i + 1, j + 1}〛 +=
-Ts Ts - 1

0 -1
;

Δ = T(-Total[φ]-Total[Cs〚All,1〛])/2 Det[A];

G = Inverse[A];

ρ1 = 
k=1

n
R1 @@ Cs〚k〛 - 

k=1

2 n
φ〚k〛 (gkk - 1/2);

Factor@

Δ, Δ
2
ρ1 /. α_+

 α + 1 /. gα_,β_  G〚α, β〛;

ρ1 is easy to compute, also in a technical sense. Ex-
cept for the computation of A−1, the computation of

ρ1 takes only a linear number of additions and multipli-
cations in the ring Z[T±1], as a function of the number of
crossings n (and the degrees and the digit-lengths of the
coefficients of all the polynomials that appear are easily
linearly bounded by n, so ring operations are cheap). The
hardest part of the computation of ρ1, inverting a matrix
with entries that are affine linear in T±1, is standard and
efficient and takes polynomial time (in n), though it’s bet-
ter not to commit to a specific bound because the bounds
on the complexity of matrix operations are still improv-
ing.

ρ1 is strong. Direct computations show that, at least on
knots with up to 12 crossings, it has more separation

power then the HOMFLY-PT polynomial and Khovanov
homology taken together. Both are considered rather
strong, and both are much harder to compute: the pro-
grams are longer, and they run in non-polynomial time.
To the best of my knowledge, presently ρ1 is the strongest
knot invariant we know, both per line of code and per
CPU cycle.

ρ1 has a home in quantum algebra. Indeed, in [BV1,
BV2, BV3] and in future publications, Roland van

der Veen and I explain how the formulas (2) and (3) arise
in a natural way from the quantization of a natural con-
traction of the lie algebra sl2. Very roughly, up to a cen-
tral factor, sl2 is the double of its half, its upper Borel
subalgebra b. If one takes b, scales its cobracket by ϵ and
then doubles, one gets a new algebra slϵ2+, which is iso-
morphic to sl2 (plus a central factor) if ϵ is invertible, yet
is solvable when ϵ = 0. The algebra slϵ2+ can be quan-
tized using the Drinfel’d double procedure, and its uni-

1Elementary is better than fancy and complicated. If you do something new that an undergraduate student can understand you contribute
more than if you do something new that only graduate students can understand.
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versal quantum knot invariant Zϵ may be considered. It
turns out that all the tensors that appear within the study
of slϵ2+ are “perturbed Gaussians”, and can be effectively
computed using techniques reminiscent of the techniques
used in perturbative quantum field theory, with ϵ as the
perturbation parameter. (Can we make this lofty quantum
algebra / QFT discussion a lot easier?)

Thus if we expand Zϵ =
∑

d≥0 Z(d)ϵd, then Z(0) is
computable using pure Gaussian techniques2. It turns
out that Z(0) reduces to the Alexander polynomial. The
computation of Z(1) then involves minimal perturbation
theory, and when the dust settles, ρ1 emerges from it.

So can we say we understand ρ1? Oh no. Some-
thing so simple as formulas (2) and (3), and so close
to the Alexander polynomial with its purely topological
definitions, ought to have a much simpler home, hope-
fully within the hamlet of topology down the street from
Alexander’s. What does this home look like?

ρ1 has neighbors. From quantum algebra it follows
that there are also ρd for d > 1 that arise in a simi-

lar manner from Z(d). Quantum algebra gives as recipes
for computing ρd, and Roland van der Veen and myself
have implemented them and computed them. They are
stronger than ρ1, but get progressively harder to com-
pute. For ρ2, the bottleneck remains inverting A (so it
is still “easy”). For ρ3 and beyond the bottleneck moves
to perturbation theory. Each ρd remains polynomial time,
but the exponents get bigger and bigger. It also follows
from quantum algebra that there should be similar poly-
time computable ρg,d for other semisimple Lie algebras
g. How can we compute them? Do they have homes in
topology?

I think it is unreasonable to believe that looking from
topology into perturbations of the Alexander polyno-
mial the theory of semisimple Lie algebras will naturally
emerge. I believe the Lie algebras appear in the collec-
tion {ρg,d} because we are searching under the existing
lamppost of quantum algebra. Once we find the right
vintage point, it will become a different collection, ρ♣,d,
parameterized by some unknown moduli ♣ which will be
meaningful in topology. What is it? Will it merely be a
change of basis, or will it be stronger then {g}, the collec-
tion of all semisimple Lie algebras?

ρ1 is “homomorphic”, meaning that it extends to tan-
gles, and that its value on a given tangle T deter-

mines its value on any tangle obtained from T by strand

doubling or by composition with other tangles3. I’ve
been shouting for a long time now [BN], that being ho-
momorphic may be a very valuable property. For indeed,
certain classes of knots that carry great interest, such as
ribbon knots and slice knots and knots of a given genus,
are definable in terms of tangles and tangle compositions
and strand doublings. Invariants that respect tangle op-
erations, namely which are homomorphic, thus have a
greater a priori chance of “saying something” about these
classes of knots: giving genus bounds, or slice or rib-
bon obstructions. I believe the Alexander polynomial has
this kind of topological applications precisely because it
is homomorphic [BNS], and I believe the homomorphic
properties of ρ1 mean that it is much more likely to be
of interest in classical low dimensional topology than al-
most anything else quantum algebra ever produced. Am
I right?

ρ1 is far from understood. There are the heavy ques-
tions as above, but even the light requires further

work. There are plenty of other matrices like A, whose
determinant computes the Alexander polynomial (aris-
ing from the Dehn presentation, from Seifert surfaces
and forms, from braid closures or plat closures of braids
and the Burau representation, from arc presentations,
from w-knots, from strange formulas by Kashaev and
Liu [Ka, Li], and more). Are there formulas for ρ1 in
terms of the inverses of each of these matrices? In partic-
ular, will the formulas coming from Seifert surfaces pro-
duce genus bounds and ribbon obstructions, as they do
for the Alexander polynomial? Will the arc presentation
formula speak with knot Floer homology, as its Alexan-
der counterpart does?

The formulas we’ve presented here for ρ1 are directly
related to the lower Wirtinger presentation, and there are
similar formulas coming from the upper Wirtinger pre-
sentation. Is there an elementary proof that these formu-
las agree? Is there an elementary proof that ρ1 is palin-
dromic (satisfies ρ1(T ) = ρ1(T−1))? If we’re having diffi-
culty already with that, we are clearly missing something.
What is it?

ρ1 extends to tangles without closed components. Is
there a natural extension of ρ1 to links and to tan-

gles that are allowed to have closed components?

2Stricktly speaking, “two-step Gaussians”, but that need not concern us here.
3Reshetikhin-Turaev invariants with fixed representations (namely, those that are computable, even if in exponential time), do not have

the “strand doubling” part of this property. In particular, the Jones polynomial and the HOMFLY-PT polynomial do not have the “strand
doubling” part of this property.
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As for the other topics within my Notice of Intent
(ωεβ/NOI), topic #1 was mentioned in passing within the
above, and will not be mentioned further. For topics #3
and #4, I will simply repeat ωεβ/NOI with some modifi-
cations:

#3 Along with Zsuzsanna Dancso, Tamara Hogan,
Jessica Liu, and Nancy Scherich (ωεβ/PDS), I

plan to continue to study knots and tangles in a “Pole
Dancing Studio” (PDS, a cylinder with a few vertical
lines removed) and their relationship with the Goldman-
Turaev Lie bialgebra and Kashiwara-Vergne (KV) equa-
tions [AKKN1, AKKN2]. Are solutions of the KV equa-
tions sufficient to construct a homomorphic expansion of
tangles in a PDS up to strand-strand degree 1? How is
this related to my earlier work with Dancso [BD1, BD2]
on welded knots? The subject is beautiful, yet it is a hard-
to-penetrate patchwork of results and techniques and pa-

pers by different authors. In the past, this feeling that a
subject’s beauty is incongruous with its complexity had
been a great motivator for me, often leading to deeper
understanding. I have high hopes for this topic too.

#4 Recently (ωεβ/PQ), along with Jessica Liu, we’ve
found a truly elegant “signatures for tangles” invari-

ant (sorry for complimenting ourselves, yet hey, it really
is elegant). There is more to do before we can claim to
fully understand these signatures. Is there an Alexander
invariant for tangles obtained using the same “pushfor-
ward” techniques? Are its roots related to the jumping
points of the signature? Does it generalize to the multi-
variable case? Within the Notice of Intent I also had a
question about proving the Kashaev signatures conjec-
ture [Ka], but that conjecture is by now my student’s Jes-
sica Liu’s theorem [Li].
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