

Let D_n be the *n*-punctured disk and let $\pi: \widetilde{D_n} \to D_n$ be its universal Abelian cover. The group $\mathbb{Z}^n = \langle t_1, \ldots, t_n \rangle$ acts on $\widetilde{D_n}$ by deck transformations. We take as a given the "standard" (antisymmetric) intersection pairing $\langle \cdot, \cdot \rangle \colon H_1(\widetilde{D_n}) \otimes H_1(\widetilde{D_n}) \to \mathbb{Z}$ and define the *equivariant* intersection pairing

$$\langle \cdot, \cdot \rangle_e \colon H_1(\widetilde{D}_n) \otimes H_1(\widetilde{D}_n) \to \mathbb{Z}\mathbb{Z}^n = \mathbb{Z}[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$$
 (1)

by

$$\langle a,b\rangle_e = \sum_{k\in\mathbb{Z}^n} \langle t^k a,b\rangle t^k,$$
 (2)

where $t^k := t_1^{k_1} t_2^{k_2} \dots t_n^{k_n}$.

Let $p \in D_n$ be a basepoint and let \tilde{p} be a fixed lift of p to $\widetilde{D_n}$ (namely, fix $\tilde{p} \in \widetilde{D_n}$ is such that $\pi(\tilde{p}) = p$). Given a curve α in D_n which begins and ends at p, we denote by $\tilde{\alpha}$ the unique lift of α to $\widetilde{D_n}$ for which $\tilde{\alpha}(0) = \tilde{p}$. We will have then a unique $w(\alpha) \in \mathbb{Z}^n$ for which $\tilde{\alpha}(1) = t^{w(\alpha)}\tilde{p}$. Every element $a \in H_1(\widetilde{D}_n)$ can be written as a finite sum $a = \sum_i f_i \widetilde{\alpha}_i$, where $f_i \in \mathbb{ZZ}^n$ and where the α_i 's are curves in D_n which begin and end at p. Similarly write $b = \sum_j g_j \widetilde{\beta}_j$. Without loss of generality, all the α_i "lean to the left" near their ends, and all the β_j "lean to the right" near their ends (see the figure). Also without loss of generality the interiors α_i^o and β_j^o of α_i and β_j avoid the basepoint p.

Claim 1. Suppose also that for every *i* and *j* the intersection $\alpha_i^o \cap \beta_j^o$ is transverse, and if $q \in \alpha_i^o \cap \beta_j^o$, denote by ϵ_q the sign of that intersection point. Then

$$\langle a,b\rangle_e = \sum_{i,j} \overline{f_i} g_j \sum_{q \in \alpha_i^o \cap \beta_j^o} \epsilon_q t^{-w\left(\alpha_i \overline{\#_q}\beta_j\right)},\tag{3}$$

where $f \mapsto \overline{f}$ is \mathbb{Z} -linear automorphism of \mathbb{ZZ}^n which extends $t^k \mapsto t^{-k}$ and where $\alpha_i \#_q \beta_j$ is the curve in D_n that follows α_i from its beginning up to the point q, and then follows β_j backwards from q to the beginning of β_j .

Remark 2. If for all *i* and *j* the curves $\tilde{\alpha}_i$ and $\tilde{\beta}_j$ are closed, we can write

$$\langle a,b\rangle_e = \sum_{i,j} \overline{f_i} g_j \langle \widetilde{\alpha_i}, \widetilde{\beta_j} \rangle_e \quad \text{and} \quad \langle \widetilde{\alpha_i}, \widetilde{\beta_j} \rangle_e = \sum_{q \in \alpha_i^o \cap \beta_j^o} \epsilon_q t^{-w(\widetilde{\alpha_i \#_q \beta_j})},$$
(4)

but in general, $\langle \tilde{\alpha}_i, \tilde{\beta}_j \rangle_e$ may not make sense as a pairing of homology classes because $\tilde{\alpha}_i$ and $\tilde{\beta}_j$ may not be homology classes. Remark 3. Rather than " α_i leans left and β_j leans right near p" we could say "the intersections of α_i and β_j with every small circle around p are not interlaced".